|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вычисление определенных интегралов методом прямоугольниковОпределенный интеграл функции f (x) на отрезке [ a,b ] можно представить как площадь под кривой f (x), ограниченной пределами интегрирования и осью абсцисс. Разобьем отрезок [ a,b ] на n отрезков одинаковой длины . В результате получим набор равноудаленных друг от друга точек . Рассмотрим один отрезок [ xi-1,xi ]. Для аппроксимации функции f (x) будем использовать полином нулевой степени , где - некоторая постоянная величина, ограниченная значениями . Сумма площадей всех прямоугольников даст приближенное значение интеграла: . (23.1) Это формула левых прямоугольников. В качестве величины можно взять значение функции на правой границе отрезка f (xi). Площадь заштрихованного прямоугольника на рис.23.1.б будет равна , а значение интеграла: . (23.2) Это формула правых прямоугольников. Если вычислять значение функции не на краях, а в середине интервала, то, согласно рис.23.1.в, можно ожидать увеличения точности, поскольку завышенные значения площади по сравнению с истинными на одной стороне прямоугольника компенсируются заниженными значениями на другой стороне. Площадь заштрихованного прямоугольника будет равна , а величина интеграла: . (23.3) Это формула средних прямоугольников. Блок-схема метода прямоугольников с заданным количеством разбиений приведена на рис. 23.2. Для начала расчета задаются границы интегрирования [ a,b ] и количество подинтервалов n, на которые разбивается основной интервал. Затем в соответствии с выбранным методом интегрирования суммируются значения функции на каждом из подинтервалов. Поскольку длины подинтервалов равны между собой, то величину D x целесообразно вынести за знак суммы и умножить на эту величину окончательную сумму значений функций. Сумма длин подинтервалов точно равна общей длине интервала интегрирования, поэтому в этом алгоритме не нужен контроль за совпадением концов последнего подинтервала и всего интервала. В некоторых случаях более удобно задавать не количество разбиений, а шаг интегрирования D x. При этом величина D x может быть не кратной длине интервала интегрирования, поэтому на последнем шаге необходима проверка совпадения длин и при необходимости корректировка величины D x. Поскольку D x может измениться, то его нельзя выносить за знак суммы. Блок-схема метода приведена на рис.23.3.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |