АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вывести формулу для определения скорости точки при векторном способе задания её движения

Читайте также:
  1. F Выполнение задания
  2. F Выполнение задания
  3. F Выполнение задания
  4. F Выполнение задания
  5. F Выполнение задания
  6. F Выполнение задания
  7. F Продолжение выполнения задания
  8. F Продолжение выполнения задания
  9. F Продолжение выполнения задания
  10. F Продолжение выполнения задания
  11. I. Задания для самостоятельной работы
  12. I. Задания для самостоятельной работы

Пусть в некоторый момент времени t положение точки М определяется радиус-вектором r(t), а в момент - радиус-

вектором (рис. 2.4). Тогда перемещение точки М за

промежуток времени

Будем считать, что промежуток времени дел.t настолько мал, что с достаточной степенью точно­сти можно предполагать перемещение точки М в положение М1, происходящим равномерно и прямолинейно. В этом слу­чае скорость точки М можно приближен­но вычислить так:

(1)

Для того, чтобы точно вычислить скорость точки в данный мо­мент времени, необходимо в формуле (1) перейти к пределу при стремлении промежутка времени ' к нулю, т.е.

(2)

Этот предел представляет собой первую векторную про­изводную по времени от радиус-вектора точки по времени. Сле­довательно, скорость точки в данный момент времени есть век­торная величина, равная первой производной от радиус-вектора точки по времени

(3)

Как следует из формул (2) и (3), вектор скорости направ­лен по касательной к траектории точки в сторону ее движения.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)