АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вывести формулу для определения ускорения точки при векторном способе задания её движения

Читайте также:
  1. F Выполнение задания
  2. F Выполнение задания
  3. F Выполнение задания
  4. F Выполнение задания
  5. F Выполнение задания
  6. F Выполнение задания
  7. F Продолжение выполнения задания
  8. F Продолжение выполнения задания
  9. F Продолжение выполнения задания
  10. F Продолжение выполнения задания
  11. I. Задания для самостоятельной работы
  12. I. Задания для самостоятельной работы

Ускорение - физическая величина, характеризующая бы­строту изменения скорости точки во времени.

Пусть точка в момент времени t находится в положении М и имеет скорость V (t), а в момент t1= t + дл.t приходит в поло­жение М1 и имеет скорость V1 (рис. 2.8). Тогда за промежуток времени At = t1— t вектор скорости получает векторное прираще­ние Дл = V1—V, которое определяет изменение вектора скорости и по величине, и по направлению. Для определения приращения скорости дл.V перенесем вектор V1 параллельно своему направле нию в точку М. Далее, соединпе концы векторов V и V1, получим дл.V. Разделив вектор дл.V на соответствующий промежуток време­ни дл.t, получим вектор

(1)

который называется вектором среднего ускорения за промежуток времени t. Вектор среднего уско­рения характеризует особенности движения точки тем точнее, чем меньшему промежутку времени он соответствует. Поэтому естествен­но рассмотреть предел, к которому стремится среднее ускорение, если соответствующий промежу­ток времени At стремится к нулю. Этот предел называют ускорением точки в данный момент времени:

(2)

Так как вектор скорости есть первая производная радиус-вектора точки по времени, то

(3)

Таким образом, ускорение точки в данный момент вре­мени, есть векторная величина, равная первой производной от вектора скорости или второй производной от радиус-вектора по времени.

Установим теперь положение вектора ускорения а отно­сительно траектории. Отметим, что плоскость треугольника МАВ, образованного векторами V, V1, AV, при At—0) будет поворачи­ваться вокруг вектора V, т.е. вокруг касательной к траектории в точке М, ив пределе займет определенное предельное положе­ние. Это предельное положение плоскости МАВ называется со­прикасающейся плоскостью в точке М траектории. Для плоской кривой эта плоскость есть плоскость самой кривой.

Как видно из рис. 2.8, вектор среднего ускорения аср на­правлен так же, как и AV, т.е. в сторону вогнутости траектории точки, и все время находится в плоскости треугольника МАВ.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)