|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Опишите частные случаи определения положения мгновенного центра скоростей1, Пусть скорости Va и Vb любых двух течек А к В параллельны друг другу и при этом линия АВ не перпендикулярна к VA, а следовательно, и к VA (рис. 2.34). Из теоремы о проекциях скоростей двух точек на прямую, соединяющую эти точки, следует, что но а = B, поэтому VB = VA и, следовательно, Vb = VA. Таким образом, в рассматриваемом случае скорости всех точек плоской фигуры в данный момент равны и по модулю, и по направлению. Такое состояние плоской фигуры называется мгновенно поступательным. Так как перпендикуляры, восстановленные из точек А и В к скоростям этих точек, не пересекаются, то в рассматриваемом случае в данный момент мгновенный центр скоростей находится в бесконечности. Угловая скорость со плоской фигуры в этот момент равна нулю. 2. Пусть скорости VA и Vb точек А и В параллельны друг другу и эти точки лежат на одном перпендикуляре к данным скоростям. В этом случае при VA не = Vb мгновенный центр скоростей Р определяется построениями, показанными на рис. 2.35, а и б. Справедливость построения следует из пропорции (6) предыдущего параграфа. Е этом случае для нахождения мгновенного центра скоростей Р нужно, кроме направлений, знать еще и модули скоростей Va и Vb. 3. Е практических задачах часто приходится иметь дело со случаем, когда плоская фигура катится без скольжения по некоторой неподвижной кривой MN (рис. 2.36). В этом случае скорость точки касания контура плоской фигуры с кривой MN равна нулю, так как точки касания обоих тел при отсутствии скольжения должны иметь одинаковые скорости, а кривая MN неподвижна. Отсюда следует, что точка касания Р является мгновенным центром скоростей плоской фигуры. В качестве примера на рис. 2.37 показано распределение скоростей точек колеса, которое катится без скольжения по неподвижному прямолинейному рельсу.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |