|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вопрос № 16 , 17Вывести векторную формулу для скорости точек тела, вращающегося вокруг неподвижной оси. Рассмотрим твердое тело, вращающееся вокруг неподвижной оси Oz с угловой скоростью Определим скорость произвольной точки М этого тела. Введем прямоугольную систему координат с началом на оси вращения и неизменно связанную с телом (рис. 2.22).В этом случае (1) Здесь следует заметить, что в разложении (1) х, у, z и вектор k постоянны, т.е. не зависят от времени, a i и j зависят от времени, так как вращаются вместе с телом. Тогда для скорости точки М имеем(2) Производные от единичных векторов, входящие в формулу (2), есть скорости концов этих векторов. Например, при ф > О вектор скорости конца i направлен параллельно j в положительном направлении оси Оу, а вектор скорости конца j направлен параллельно i в отрицательном направлении оси Ох. Модуль каждой из этих скоростей равен \ф\. Тогда Далее, учитывая, что j =k*x, a -i =k * j, получим (3) Подставляя формулы (3) в равенство (2) и используя то, что , найдем (4) Назовем вектор фк вектором угловой скорости со, тогда (5) Как видно из равенства (5), вектор угловой скорости тела направлен вдоль оси вращения так, чтобы наблюдатель, смотрящий с его конца, видел вращение тела против хода часовой стрелки. Вектор ф можно расположить в любом месте оси вращения, т.е. ф — скользящий аксиальный вектор. Перепишем теперь формулу (4) с учетом (5), тогда (6) Вектор скорости любой точки тела, вращающегося вокруг неподвижной оси, равен векторному произведению вектора угловой скорости тела на радиус-вектор этой точки, проведенный из произвольного центра, взятого на оси вращения. Формула (6) называется формулой Эйлера.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |