АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Показники варіації та формули для їх розрахунку

Читайте также:
  1. Аналітичний метод розрахунку кількості технічного обслуговування і ремонту тракторів
  2. Бактериологічні показники якості води характеризують нешкідливість води відносно присутності хвороботворних мікроорганізмів.
  3. Валовий внутрішній продукт: поняття та методи розрахунку
  4. Вартісні показники ефективності використання
  5. Виконання розрахунку та завершення роботи
  6. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III ( всі № №, що закінчуються на цифру 1, наприклад: № 1, № 11, № 21 . . . №1141 ).
  7. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 0, наприклад: № 10, № 20, № 30 . . . №1140).
  8. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 3, наприклад: № 3, № 13, № 23 . . . №1143)
  9. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 4, наприклад: № 4, № 14, № 24 . . . №1144).
  10. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 5, наприклад: № 5, № 15, № 25 . . . №1145 ).
  11. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 7, наприклад: № 7, № 17, № 27 . . . №1147).
  12. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 8, наприклад: № 8, № 18, № 28 . . . №1148).
Назва показника Розрахункова формула за даними
не згрупованими згрупованими
Середнє лінійне відхилення
Середнє квадратичне відхилення
Дисперсія
хі – індивідуальні значення окремої ознаки, варіанти; – середня арифметична (середнє значення ознаки); n – обсяг сукупності, кількість ознак у сукупності; fi частота відповідної ознаки.

 

Дисперсія являє собою середній квадрат відхилень, є відповідні властивості дисперсії і вона пов’язана з середнім квадратичним відхиленням таким співвідношенням:

 

,

де s – середнє квадратичне відхилення;

D = s 2 – дисперсія.

При порівнянні варіації різних ознак або однієї ознаки у різних сукупностях використовуються відносні характеристики: коефіцієнти варіації. До них належать:

· лінійний коефіцієнт варіації, який обчислюється за формулою:

 

, або ·100 %,

 

де – середнє лінійне відхилення;

– середня арифметична;

· квадратичний коефіцієнт варіації, який обчислюється за формулою:

 

, або ·100 %,

 

де s – середнє квадратичне відхилення;

· коефіцієнт осциляції, який обчислюється за формулою:

 

,

 

де R – розмах варіації.

Чим менше середнє відхилення, тим більш типова середня, тим більш однорідна сукупність. Найчастіше квадратичний коефіцієнт варіації використовують як критерій однорідності сукупності, він є ознакою надійності середньої.. У симетричному, близькому до нормального, розподілі Vσ = 0,33.

Для малих сукупностей розрізняють такі значення відносних коливань:

Vσ < 10% - незначне коливання, сукупність однорідна, значення середньої є типовим рівнем ознаки в даній сукупності;

10 % ≤ Vσ ≤ 33% - середнє коливання, сукупність в межах однорідності, значення середньої можна вважати типовим рівнем ознаки в даній сукупності;

Vσ > 33% - високий рівень варіації, сукупність неоднорідна, значення середньої неможна вважати типовим рівнем ознаки в даній сукупності.

Дисперсія альтернативної ознаки обчислюється як добуток часток за формулою:

 

,

 

де d 1 – частка елементів сукупності, яким властива ознака;

d 0 – частка решти елементів, у яких відсутня ознака (d 0 = 1 – d 1).

 

Дисперсія альтернативної ознаки широко використовується під час проектування вибіркових обстежень, обробці даних соціологічних опитувань, статистичному контролі якості продукції тощо.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)