Види рядів динаміки та їх особливості
Економічні та соціальні явища дуже різні і тому вони можуть бути представлені у хронологічному порядку у вигляді різних рядів динаміки. Класифікація рядів динаміки за чотирма напрямками представлена на рис. 7.1.
7.3. Статистичні характеристики часових рядів: абсолютний приріст, темп зростання, темп приросту, абсолютне значення 1% приросту; їх взаємозв’язок
Рядом динаміки є ряд послідовних рівнів, при співставленні яких між собою можна отримати характеристику швидкості та інтенсивності розвитку явища. У результаті такого порівнювання рівнів отримують систему абсолютних та відносних показників динаміки. Виконання розрахунків при цьому можливо у двох варіантах, які схематично представлені на рис. 7.2.:
o 1-й варіант - кожний рівень ряду динаміки порівнюється безпосередньо з попереднім, і таке порівняння називається порівнянням із змінною базою, а розраховані показники – ланцюговими характеристиками динаміки.
o 2-й варіант - кожний рівень ряду динаміки порівнюється з одним і тим же попереднім рівнем, який прийнято за базу порівняння. В якості базового рівня вибирають початковий рівень ряду динаміки, або рівень, з якого починається якийсь новий етап розвитку явища. Таке порівняння називається порівнянням з постійною базою, а розраховані показники – базисними характеристиками динаміки.
o Базисні показники характеризують кінцевий результат всіх змін у рівні ряду від періоду, до якого належить базисний рівень, до даного (і -го) періоду.
o Ланцюгові показники характеризують інтенсивність зміни рівня від періоду до періоду (або від дати до дати) в межах проміжку часу, що вивчається.
Рис. 7.1. Класифікація рядів динаміки
Абсолютний приріст (зменшення) Dt - це показник ряду динаміки, який характеризує на скільки одиниць змінився поточний рівень показника порівняно з рівнем попереднього або базового періоду. Абсолютний приріст із змінною базою виражає абсолютну швидкість зміни рівнів ряду динаміки. Розраховується абсолютний приріст як різниця двох рівнів динамічного ряду:
ланцюговий Dt = у t - y t -1,
базисний Dt = y t - y0.

Між ланцюговими та базисними показниками існує взаємозв’язок – сума ланцюгових абсолютних приростів дорівнює кінцевому базисному:
Коефіцієнт зростання - це показник ряду динаміки, який показує:
у скільки разів зріс поточний (порівнюваний) рівень показника, що аналізується, порівняно з рівнем попереднього (базового) періоду – якщо значення коефіцієнту зростання Кt > 1;
яку частку становить поточний (порівнюваний) рівень показника до рівня попереднього (базового) періоду періоду – якщо значення коефіцієнту зростання Кt < 1;
що ніяких змін не відбулося - якщо значення коефіцієнту зростання Кt = 1.
Коефіцієнт зростання Кt розраховується як відношення рівнів ряду і виражається коефіцієнтом:
ланцюговий К t = y t / y t --1,
базисний К t = y t / y0.
Зв’язок між ланцюговими і базисними коефіцієнтами зростання полягає в тому, що добуток ланцюгових коефіцієнтів зростання дорівнює кінцевому базисному:
.
Темп зростання – це коефіцієнт зростання, але представлений у відсотках, тобто
Тр = Кt · 100,
або для ланцюгових Тр = ( y t / y t —1)·100,
для базисних Тр = ( y t / y0)·100.
Темп приросту - це показник ряду динаміки, який показує на скільки відсотків змінився поточний (порівнюваний) рівень аналізованого показника порівняно з рівнем попереднього або базового періоду. Його можна визначити як відношення абсолютного приросту до бази порівняння або безпосередньо на основі темпу зростання.
Для ланцюгових характеристик:
Т пр = 100 · D t / y t —1 = 100 (y t – y t —1) / y t —1 = 100 (Кt – 1) = Тр - 100.
Аналогічно взаємопов’язані і базисні темпи приросту.
Абсолютне значення одного відсотка приросту — це відношення абсолютного приросту до відповідного темпу приросту або одна сота попереднього рівня. Абсолютне значення 1 % приросту показує, чого вартий 1% і розраховується як співвідношення абсолютного приросту й темпу приросту. Алгебраїчно це співвідношення дорівнює 0,01 рівня, взятого за базу порівняння:
А% = D t / Т пр =(y t - y t —1)/ 100 (yt - y t —1)/ y t --1 = y t --1 / 100 = 0,01 y t —1.
Для базисних темпів приросту значення А% однакові, тому їх не розраховують. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | Поиск по сайту:
|