АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные свойства пределов

Читайте также:
  1. A) это основные или ведущие начала процесса формирования развития и функционирования права
  2. I. Определение, классификация и свойства эмульсий
  3. I. Основные характеристики и проблемы философской методологии.
  4. II. Основные задачи и функции Отдела по делам молодежи
  5. II. Основные принципы и правила поведения студентов ВСФ РАП.
  6. III. Основные требования к одежде и внешнему виду учащихся
  7. III. Основные требования по нормоконтролю
  8. III. Химические свойства альдегидов и кетонов
  9. WWW и Интернет. Основные сведения об интернете. Сервисы интернета.
  10. а) наименьшая частица вещества, которая сохраняет его химические свойства.
  11. А) основные
  12. А) приобретение и передача технологий, включая основные проектные работы

1. Если предел функции в точке существует, то он единственный.

2. Предел постоянной величины равен самой постоянной:

.

3. Предел суммы (разности) конечного числа функций равен соответственно сумме (разности) пределов этих функций:

.

4. Предел произведения конечного числа функций равен произведению пределов этих функций:

.

Следствие. Постоянный множитель можно выносить за знак предела:

.

4. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен нулю:

(при ).

Все свойства имеют смысл, если пределы функций существуют.

Для вычисления пределов используется свойство элементарных функций: если - элементарная функция, то . Это означает, что если предельная точка принадлежит области определения функции , то вычисление предела сводится к подстановке в функцию вместо числа .

Пример. Вычислить предел .

Точка принадлежит области определения функции , значит, .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)