АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Энергия заряженного проводника и конденсатора

Читайте также:
  1. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  2. Внутренняя энергия идеального газа
  3. Внутренняя энергия идеального газа. Работа газа при изобарном расширении. Применение первого начала термодинамики к изопроцессам. Понятие о втором начале термодинамики.
  4. Внутренняя энергия реального газа
  5. Внутренняя энергия реального газа. Эффект Джоуля - Томсона
  6. Внутренняя энергия тела и способы её изменения. Изменение внутренней энергии тела при нагревании. Первое начало термодинамики. Обратимые и необратимые процессы.
  7. Внутренняя энергия. Количество теплоты. Работа в термодинамике
  8. Вопрос 29 Энергия электростатического поля
  9. Вопрос 42 Энергия магнитного поля тока
  10. Вопрос 7 Энергия
  11. Вопрос 9 Работа и кинетическая энергия вращения
  12. Вопрос№22 Колебательный контур. Энергия колебательного контура

Заряд, находящийся на проводнике можно рассматривать, как систему взаимодействующих между собой точечных зарядов. Такая система обладает потенциальной энергией. Потенциальной энергией, которой обладает заряженный проводник в отсутствии внешнего электрического поля, называется собственной энергией проводника. Энергия уединенного заряженного проводника может быть определена по одной из формул

,

где - заряд проводника, - потенциал проводника, - электроемкость проводника.

Энергия конденсатора, т.е. системы, состоящей из двух проводников, может быть определена по следующим формулам

,

где - величина заряда одной обкладки конденсатора, - разность потенциалов между обкладками конденсатора, - электроемкость конденсатора.

В случае плоского конденсатора энергия модет быть вычислена следующим образом


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)