|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сопротивление тела при неустановившемся движении. Понятие присоединенной массыРассмотрим простейший случай неустановившегося движения тела – прямолинейное движение тела вдоль оси x (рис. 18) с переменной во времени скоростью . Как и в случае движения с постоянной скоростью, при движении тела с переменной скоростью существуют вязкостное и волновое сопротивления. При движении тела с переменной скоростью расчет этих составляющих производится, исходя из позиций гипотезы стационарности. В соответствии с этой гипотезой вязкостная и волновая составляющие сопротивления определяются как для тела, двигающегося с постоянной скоростью, равной мгновенной скорости тела в рассматриваемый момент времени при неустановившемся движении. Кроме этих составляющих сопротивления, при движении тела с переменной скоростью имеет место инерционная сила Rин. Эту составляющую можно получить из закона об изменении кинетической энергии: изменение кинетической энергии системы за промежуток времени dt равно работе приложенных к системе сил, то есть . (5.2) Здесь dTж – изменение кинетической энергии жидкости, окружающей тело за время dt; R – изменяющаяся во времени сила, с которой тело действует на жидкость. Согласно третьему закону Ньютона, со стороны жидкости на тело будет действовать сила Rин=-R, которая является искомой инерционной составляющей. Тогда на основании (5.2) можно записать , откуда . (5.3) Таким образом, для определения инерционной силы необходимо знать кинетическую энергию жидкости, окружающей тело. Кинетическая энергия частицы жидкости объемом dV (рис. 18), имеющей скорость v, равна , а всей жидкости . (5.4) Несмотря на то, что объем жидкости V¥ может быть безграничным, интеграл в последнем выражении – величина конечная, так как любое тело конечных размеров, двигаясь в жидкости конечное время, может сообщить ей лишь конечную кинетическую энергию. Разделим и умножим выражение (5.4) на , тогда . (5.5) Интеграл в этой формуле имеет размерность массы и называется присоединенной массой l: . Таким образом, вместо (5.5) можно записать (5.6) Из последнего выражения следует, что присоединенная масса – это такая фиктивная масса жидкости, которая при движении со скоростью тела обладает кинетической энергией, равной кинетической энергии жидкости, окружающей движущееся тело. В приведенном определении l масса названа фиктивной в том смысле, что она не является какой-либо массой конечных размеров, движущейся вместе с телом. Величина присоединенной массы зависит от формы тела и направления движения тела в жидкости. С другой стороны, можно показать, что l не зависит от времени, так как, несмотря на неустановившийся характер движения, скорость v в каждый момент времени пропорциональна vT и их отношение постоянно во времени. Учитывая сказанное, после подстановки (5.6) в (5.3) получим , (5.7) где знак «минус» показывает, что инерционная сила направлена в сторону, противоположную ускорению; при ускоренном движении Запишем уравнение движения тела с массой m под действием силы P (рис.19), которой может быть, например, упор гребного винта. В соответствии со вторым законом Ньютона или с учетом (5.7) , откуда, перенеся инерционное слагаемое в левую часть, получим . Последнее выражение показывает, что влияние жидкости на движущееся в ней тело с ускорением приводит как бы к увеличению массы тела m на величину l. В этом смысле l и получила название присоединенной массы. В настоящее время присоединенные массы определяются на базе теории невязкой жидкости. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |