АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Формула повної ймовірності. Формула Байеса

Читайте также:
  1. Барометрическая формула
  2. Барометрическая формула. Распределение Больцмана.
  3. Визначити енергію вибуху балону. Формула (3)
  4. Відносна частота. Статистичне означення ймовірності.
  5. Внешний фотоэффект и его законы. Формула Эйнштейна для фотоэффекта.
  6. Вопрос 2 Формула апостериорной вероятности Байеса
  7. Вопрос 2 Формула апостериорной вероятности Байеса.
  8. Вопрос 2 Формула апостериорной вероятности Байеса.
  9. Дифракция на трехмерных структурах. Формула Вульфа-Брэггов. Рентгеноструктурный анализ. Понятие о голографии.
  10. Задачі на формулу повної ймовірності та формули Бейеса
  11. Из формулы (8.4) следует формула Байеса
  12. Интерполяционная формула Ньютона.

 

Нехай А – деяка подія, яка може відбутись або не відбутись одночасно з однією з подій Н1, Н2,...Нn, що утворюють повну групу несумісних подій . Події Н1, Н2,...Нn називають гіпотезами. Ймовірності всіх гіпотез відомі Р(Ні) (і= ), а також відомі умовні ймовірності події А при кожній гіпотезі, тобто дано: .

Тоді ймовірність події А визначається теоремою.

Теорема 1. (формула повної ймовірності). Ймовірність події А, що може відбутись разом з однією з гіпотез Н1, Н2,...Нn, дорівнює сумі добутків ймовірності кожної з гіпотез на відповідну умовну ймовірність події А:

. (1)

Доведення. Так як гіпотези Н1, Н2,...Нn утворюють повну групу подій, то подію А можна записати як: , а оскільки несумісні, то:

.

Теорема доведена.

До цих пір розглядалася ймовірність події до випробовування, тобто в комплексі умов не був присутній результат проведеного випробовування.

Тому поставимо тепер наступну задачу. Є повна група несумісних гіпотез Н1, Н2,...Нn. Відомі ймовірності кожної з гіпотез . Проводиться випробування і в його результаті відбувається подія А, ймовірності якої по кожній гіпотезі відомі, тобто .

Виникає питання, які ймовірності мають гіпотези Hi в зв’язку з появою події А? Тобто були відомі ймовірності апріорні (від латинського a priori – до випробовування). Якщо ж подія А відбулася, то чи можна переоцінити ймовірності кожної з гіпотез ? Ці нові ймовірності будуть вже апостеріорними ймовірностями гіпотез (від латинського a posteriori – після випробовування).

Відповідь на це питання дає теорема Байеса.

Теорема 2. Ймовірність гіпотези після випробовування рівна добутку ймовірності гіпотези до випробовування на відповідну їй умовну ймовірність події, яка відбулася в результаті випробовування, поділеній на повну ймовірність цієї події:

. (2)

Доведення. З аксіоми множення ймовірностей випливає:

Звідки

Теорема доведена.

Приклад 1. До магазину надходять вироби з двох заводів, причому з першого 150 штук, а з другого 250. Перший завод випускає в середньому 0.5% бракованої продукції, другий – 0.2%. Яка ймовірність купити в магазині бракований виріб?

Рішення. Нехай подія А є купівля бракованого виробу, гіпотеза Н1 – виріб, випущений першим заводом, гіпотеза Н2 – другим заводом. Тоді

По формулі повної ймовірності:

Приклад 2. Спеціалізована лікарня приймає в середньому 50% хворих, що мають захворювання Н1, 30% - захворювання Н2 і 20% - Н3. Статистика свідчить, що ймовірність повного виліковування хвороби Н1 дорівнює 0.9, для хвороби Н2 – 0.7 і для хвороби Н3 – 0.8. Яка ймовірність того, що пацієнт, виписаний з лікарні цілком здоровим (подія А), був хворий на хворобу Н2?

Рішення.

Згідно формули Байеса


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)