|
|||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Наиболее распространенными формами представления алгоритмов являются таблицы и древовидные графыБезусловные алгоритмы с безусловной остановкой представляются в виде таблиц, в качестве которых могут выступать словари неисправностей (таблица 1). Таблица 1
В строках таблицы – все возможные проверки . Графы таблицы соответствуют всем возможным неисправным состояниям: . На пересечении i-ой графы и j-го столбца проставляется результат j-ой проверки для системы, находящейся в i-ом состоянии. Если значение проверки в объекте с j-ой неисправностью совпадает с ее значением в исправном объекте, то в таблице записывается 1 (данную неисправность, рассматриваемая проверка не обнаруживает, в противном случае записывается 0). Если во всех элементах графы проставлены 1, то она соответствует неисправности, которая не может быть обнаружена принятым методом диагностирования. В этом случае поиск неисправного элемента требует выполнения всего множества проверок, включенных в тест, с фиксацией их результатов. На основе анализа полной совокупности этих результатов делается вывод о месте неисправности. Безусловный алгоритм с условной остановкой представляется в виде графа. Рассмотрим граф (рисунок 10), который моделирует алгоритм поиска неисправности по таблице 1.Корневая вершина графа представляет множество всех рассматриваемых технических состояний объекта, а остальные вершины – подмножества состояний, выделяемые в результате деления множества S и его подмножеств по результатам элементарных проверок. Висячие вершины соответствуют подмножествам эквивалентных состояний. Исходящими из вершин дугами изображаются элементарные проверки, а заходящими дугами – результаты этих проверок. Заданный алгоритм предусматривает подачу поверок в фиксированной последовательности – (как они расположены в таблице 1). Однако выполнение алгоритма может быть остановлено на любом этапе, если выделилось подмножество состояний соответствующих висячей вершине. Так, на первом этапе алгоритма при выполнении проверки получение результата 0 останавливает алгоритм, так как выделено подмножество эквивалентных состояний . В противном случае применяют проверку и алгоритм продолжает выполняться. Рисунок 10 – Безусловный алгоритм с условной остановкой Условные алгоритмы также представляются в виде графов. Построение условного алгоритма начинается с выбора первой проверки. В зависимости от исхода первой проверки множество возможных состояний S делится на два подмножества, после чего выбираются проверки (они могут быть разными), разделяющие эти подмножества. Выбор проверки продолжается до тех пор, пока множество S не будет разделено на отдельные подмножества эквивалентных состояний. На рисунке 11 приведен условный алгоритм, построенный по таблице 1. Рисунок 11 – Условный алгоритм Для одного и того же объекта диагностирования может быть построено значительное количество безусловных и условных алгоритмов диагностирования. Каждый из них будет обладать определенными особенностями. Представленный условный алгоритм имеет преимущество перед безусловным алгоритмом, которое состоит в том, что в условном алгоритме любая неисправность может быть обнаружена не более чем за три шага алгоритма, в то время как во втором (безусловном алгоритме) может потребоваться выполнение и четырех шагов алгоритма. Но безусловный алгоритм в свою очередь дает возможность обнаружить неисправность уже при выполнении первого шага, а в условном алгоритме такой возможности нет.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |