АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Рівняння типу згортки

Читайте также:
  1. Бюджетні обмеження споживача, бюджетне рівняння та фактори впливу на бюджетну лінію.
  2. Геометрична інтерпретація, диференціального рівняння першого порядку.
  3. Геометричний зміст похідної. Рівняння дотичної.
  4. Грошовий обіг та його закони. Рівняння грошової та товарної мас (рівняння Ірвена Фішера). Грошові агрегати.
  5. Диференціальне рівняння кривої, яка в кожній точці має задану дотичну
  6. Диференціальні рівняння вищих порядків
  7. ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ВИЩИХ ПОРЯДКІВ МЕТОД ЗНИЖЕННЯ ПОРЯДКУ
  8. Диференціальні рівняння другого порядку
  9. Диференціальні рівняння з відокремленими змінними
  10. Диференціальні рівняння з відокремленими і відокремлюваними змінними
  11. Диференціальні рівняння першого порядку з
  12. Диференціальні рівняння, що допускають зниження порядку

Означення. Нехай і дві неперервні функції, визначені при . Згорткою цих двох функцій називається функція , яка також є неперервною при .

Нагадаємо теорему множення для перетворення Лапласа: якщо і є функціями-оригіналами для перетворення Лапласа, то перетворення згортки дорівнює добутку зображень функцій і .

Означення. Рівняння називається ІР типу згортки.

Нехай і є функціями-оригіналами, тому

і отримаємо операторне рівняння , . Оригінал для буде розв’язком ІР.

Приклад.

, ,

Зауваження. Перетворення Лапласа може бути застосоване до розв’язування систем ІР Вольтерра виду , де - відомі неперервні функції, що мають зображення за Лапласом. Застосувавши до обох частин перетворення Лапласа, отримаємо систему операторних рівнянь

.

Приклад.

Застосуємо до кожної функції-оригіналу перетворення Лапласа:

.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)