АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Колебания в твердых телах

Читайте также:
  1. V2: Свободные и вынужденные колебания
  2. Акустические колебания
  3. Акустические колебания
  4. Акустические колебания, их классификация, характеристики, вредное влияние на организм человека, нормирование.
  5. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  6. Воздействие негативных факторов на человека и их нормирование (вибрации и акустические колебания)
  7. Вопрос 12 Механические колебания
  8. Вопрос 12 Механические колебания (вибрация)
  9. Вопрос 13 Акустические колебания (шум)
  10. Вопрос 26 : Свободные гармонические механические колебания и их характеристики. Математический и физический маятники.
  11. Вопрос№15 Механические колебания. Виды колебаний. Параметры колебаний движения
  12. Вопрос№28 Механические свойства твердых тел. Кристаллы, аморфные вещества

Колебательные процессы в твердых телах похожи на колебания в газах. На рис. 3.3 представлена продольная деформация твердого тела в направлении оси х.


Рис. 3.3. Продольные колебания в твердом теле

Относительная деформация элементарного объема при смещении u равна

Согласно закону Гука, это приводит к появлению упругой силы

  (3.10)

где Е – коэффициент (модуль Юнга), характеризующий жесткость среды. Равнодействующая сил упругости, действующих в сечениях 1' и 2' равна:

  (3.11)

Записывая второй закон Ньютона в виде:

  (3.12)

находим уравнение колебаний в твердом теле:

  (3.13)

где

  (3.14)

 

Размерность модуля Юнга совпадает с размерностью давления, так что v и здесь имеет размерность скорости.

Выше мы рассматривали продольные смещения в твердом теле. В отличие от газов, упругие силы возникают в твердых телах и при деформации сдвига. Уравнение для таких поперечных колебаний имеет тот же вид (3.13), но вместо модуля Юнга в выражении для v будет стоять так называемый модуль сдвига G:

  (3.15)

Механизм распространения продольных и поперечных колебаний показан на рис. 3.4 и 3.5.


Рис. 3.4. Продольные волны в твердом теле


Рис. 3.5. Поперечные волны в твердом теле


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)