|
||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Волна вероятностиПредыдущая глава закончилась констатацией, что мы пока не установили, что именно колеблется при движении электрона. В истории физики такое уже случалось. Когда-то при выводе уравнений электродинамики Максвелл тоже не знал, что представляют собой описываемые им колебания и волны, но уравнения оказались верны. Поэтому отложим пока вопрос о физической природе волн де Бройля и просто введем некую «электронную» волну, то есть волновую функцию Y(t, r). О ней мы знаем пока только одно: волновая функция должна описывать результаты опытов, доказывающих волновые свойства электронов (дифракцию и т. п.). пропорциональна вероятности обнаружить электрон в точке r в момент времени t. Волна де Бройля - это волна вероятности! Отдельный акт взаимодействия электрона с кристаллом остается отдельным актом (электрон-частица), но результат его можно предсказать только вероятностно, статистически (электрон-волна). В этом - смысл корпускулярно-волнового дуализма. Квантовая механика создана и 1925-1927 гг. В. Гейзенбергом и Э. Шредингером; вероятностная интерпретация волновой функции дана чуть позже в работах М. Борна и школы Н. Бора. Итак, вероятность найти электрон в точке r должна быть пропорциональна Но вероятность обнаружить электрон точно в данном месте исчезающе мала; имеет смысл говорить лишь о его попадании в малый объем dV окружающий эту точку. Ясно, что вероятность dW обнаружить там электрон пропорциональна величине объема. Поэтому для вероятности имеем
Иными словами Вероятность W(V) найти частицу в каком-то конечном объеме V вычисляется с помощью сложения вероятностей, то есть интегрированием
Интегрирование в (4.2) ведется по объему V (в случае одномерного движения - по отрезку). Полная вероятность найти частицу хоть где-нибудь в пространстве должна быть равна единице. Отсюда - так называемое условие нормировки волновой функции: такой же интеграл по всему пространству равен единице, то есть
Замечание: выполнение этого условия возможно для тех задач, в которых классическая частица движется в ограниченной области пространства (финитное движение). Для других движений условие нормировки усложняется. Наблюдаемые физические величины должны описываться действительными числами и функциями. Соответственно, мы представляли классические волны (звуковые, электромагнитные) в виде
Где
так что переход к комплексным волнам не меняет привычных нам соотношений. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |