|
|||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Частица в бесконечно глубокой потенциальной ямеПотенциальная энергия в этой задаче имеет вид
Такая система соответствует частице, движущейся вдоль прямой линии и отскакивающей от абсолютно отражающих препятствий в точках х=0 и х=l. В область бесконечного потенциала частица проникнуть не может, следовательно, y(х)=0 за пределами отрезка [ 0, l ]. Внутри ямы U(x)=0, и стационарное уравнение Шредингера имеет тот же вид, как для свободной частицы. Получатся те же решения в виде суперпозиции стоячих (или бегущих) волн, но в отличие от предыдущего случая добавятся граничные условия. Именно, в точках х=0 и х=l волновая функция должна обращаться в нуль (поскольку она непрерывна и равна нулю вне ямы). В классической механике точно такие граничные условия имеет уравнение для закрепленной струны. Общее решение имеет вид Теперь наложим второе из граничных условий:
Мы получили квантование энергии, то есть наша «струна», закрепленная с обеих сторон, зазвучала, так как появились выделенные частоты. Подставляя найденные разрешенные значения волнового вектора в выражение для волновой функции, получаем ее в виде
Смысл квантового числа п: оно на единицу больше числа нулей волновой функции. Значение постоянной Откуда же берется дискретность уровней энергии, характерная и для атома? Сравним со свободной частицей: уравнения те же, но с иными граничными условиями! Здесь возможны две постановки задачи. В первом случае исследуется состояние, которому в классической механике соответствовало бы инфинитное движение (задача рассеяния). Обычно в таких случаях решения возможны при любых значениях энергии Е (как говорят, спектр непрерывен). Во втором случае исследуется состояние, которому в классике соответствует финитное движение в ограниченной области пространства (задача на связанные состояния). Требование конечности волновой функции во всем пространстве ведет к квантованию энергии. Подчеркнем: в этом случае стационарное уравнение имеет физически приемлемые решения не всегда, а лишь при некоторых значениях Е. Как следствие возникает дискретный спектр энергии системы. Пример. Определим разность соседних уровней энергии DЕ для частицы в бесконечно глубокой потенциальной яме при больших значениях п. Полученный результат используем для оценки разности энергий соседних уровней молекул азота при комнатной температуре Т=300 К в сосуде. Примем массу молекулы m=2.3 · 10-26 кг, а линейный размер сосуда l=0.1 м. Сравним полученный результат с кинетической энергией поступательного движения молекул азота. Используя выражение (4.24) для уровней энергии частицы в потенциальной яме, находим разность энергий соседних уровней Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |