Уравнение Гиббса - Гельмгольца
Функции F и G, как оказалось - надежный критерий оценки возможности, направления и пределов протекания естественных процессов в неизолированных системах. Однако при решении реальных задач возникает необходимость знания зависимости F и G от температуры.
После дифференцирования (4.57):
dF = dU - TdS - SdT,
где TdS = dU + pdV.
Тогда:
dF = dU - dU - pdV - SdT = -pdV - SdT,
из чего:
F = f (V, T). (4.64)
Тогда:
, (4.65)
где
= -p, а = -S. (4.66)
Аналогично:
dG = dU + pdV + Vdp - TdS - SdT,
где TdS = dU + pdV.
Тогда:
dG = dU + pdV + Vdp - dU - pdV - SdT = Vdp - SdT,
следовательно
G = f (p, T). (4.67)
После дифференцирования (4.67):
,
откуда
, а , (4.68)
После замены из (4.66) и (4.68) уравнения (4.57) примут вид:
и . (4.69)
Получены два важных уравнения, называемые уравнениями Гиббса - Гельмгольца, устанавливающие зависимость F и G, при V и p = const соответственно, от температуры.
Составляя уравнения (4.69) для исходного и конечного состояния системы и вычитая первые из вторых можно получить соотношения для изменения этих функций:
и . (4.70)
Из ранее изложенного:
; ; ; .
Поэтому:
, a (4.71)
или уравнение Гиббса - Гельмгольца в обобщенной форме записи:
, (4.72)
где - температурный коэффициент работы.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | Поиск по сайту:
|