|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Классический метод решения задачи безусловной минимизации функции многих переменных. ПримерПод кл. методом подразум. подход к поиску точек экстремума ф-ций многих переменных, кот. основан на дифференц. исчислении. Т1 Вейерштрасса( о достижении верхней и нижней граней непрер. ф-ции., опред-й на огранич. замкнут.мн-ве). Пусть в задаче След. Пусть X - замкнуто, Т-ма2. Пусть ф-ция Зам1. Точки Т4 (достат.усл.оптим-ти). Пусть в з.(1) ф-я f(x) дважды диф-ма. Т-ка
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (1.387 сек.) |