АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Припустимо, що у результаті випробування отримано інтервальний варіаційний ряд ознаки
Значення показника
|
|
| …
|
| Частоти
|
|
| …
|
| ,
і дослідник має підстави вважати його розподіленим за нормальним законом. Для побудови нормального закону необхідно обчислити вибіркову середню і дисперсію цього розподілу. Відповідно до закону великих чисел вибіркова середня є оцінкою математичного сподівання , а дисперсія – оцінкою дисперсії нормального закону. Нормальний закон з параметрами і буде теоретичним законом, що відображає розподіл ознаки в генеральній сукупності.
Приклад.
| Зріст дорослих чоловіків є випадковою величиною, розподіленою за нормальним законом. Знайти загальні вирази густини ймовірності і функції розподілу за даними таблиці
|
| 168-170
| 170-172
| 172-174
| 174-176
| 176-178
| 178-180
| 180-182
| 182-184
| 184-186
|
|
|
|
|
|
|
|
|
|
|
. Замінимо інтервали на їх середини
За формулами і обчислюємо вибіркову середню і дисперсію
.
Тоді , , . Густина ймовірності
Функція розподілу має вигляд
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | Поиск по сайту:
|