|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
В 2. Сварка в твердом состоянии: условия образования сварного соединения, примерыВ последнее время показано, что металлы можно сваривать и при комнатных температурах без нагрева металла до высоких температур. Соединение металлов происходит в твердом состоянии вследствие образования металлических связей на свариваемых поверхностях при их совместном деформировании. Сварка в твердом состоянии – это ряд сварочных процессов, при температурах существенно ниже точек плавления основного металла, без добавления присадочного металла или пайки твердого припоя. Давление к соединению может как прикладываться, так и нет. Например, холодная сварка, диффузионная сварка, кузнечная сварка, горячая сварка под давлением и сварка прокаткой. Для идеального случая процесс образования металлического соединения при холодной сварке можно представить следующим образом. Предположим, что имеются два куска металла с абсолютно гладкими и чистыми поверхностями. Так как металлы представляют собой конгломерат из положительно заряженных ионов и электронов, то взаимодействие между облаками электронов и ионами, находящимися в узлах кристаллической решетки, определяет монолитность и прочность кусков металла. При сближении двух металлических поверхностей происходит коллективизация электронов, вылетающих из поверхностей, в результате чего возникают силы взаимодействия между поверхностями. При достаточном сближении двух кусков металла образуется общее электронное облако и, следовательно, единый агрегат. Из приведенных выше рассуждений следует, что при сближении идеально гладких и идеально чистых поверхностей между ними самопроизвольно возникают межатомные силы взаимодействия, т. е. происходит образование прочного соединения. Однако строение реальной металлической поверхности весьма сложно и в значительной степени отличается от идеальной — ювенильной поверхности. Геометрия реальной металлической поверхности определяется ее волнистостью и шероховатостью. Волнистость характеризует геометрию поверхности в макроскопическом, а шероховатость — в микроскопическом масштабе. Нужно также отличать ультрамикронеровности. Геометрию поверхности можно представить в виде двух кривых: кривой волны и частотной кривой шероховатостей, которые накладываются на кривую волны. Шероховатости могут быть очень разнообразны по высоте микровыступов и расстоянию между их вершинами. Вследствие наличия главным образом микронеровностей действительная площадь поверхностей металла во много раз превышает площадь, замеренную обычными методами. В верхних слоях металла сосредоточена значительная поверхностная энергия, обусловленная наличием некомпенсированных металлических связей, дислокаций, вакансий, что в совокупности с развитой поверхностью в микро- и ультрамикронеровности вызывает активное взаимодействие атомов металла, расположенных на поверхности, с внешней средой. Над металлической поверхностью существует облако непрерывно движущихся свободных электронов, покидающих металл и снова возвращающихся в него. Благодаря этому процессу поверхность металла покрыта двойным электрическим слоем: минус — облако электронов и плюс — дырки верхних слоев металла (за счет покинувших металл свободных электронов). Плотность электрического заряда двойного электрического слоя непостоянна по всей поверхности и зависит от ее микрогеометрии. Наибольший потенциал концентрируется на остриях микровыступов. Поэтому микровыступы — наиболее активные участки поверхности. Вследствие высокой активности поверхностных слоев металла она всегда покрыта окислами, жидкими и газовыми пленками. Идеально чистая (ювенильная) металлическая поверхность, свободная от окисных пленок и адсорбированных слоев жидкостных и газовых молекул, может быть создана только в очень глубоком вакууме. Вакуум 10-9 мм рт. ст. не предохраняет поверхности металла от возникновения на них слоев из молекул газа. Ювенильная металлическая поверхность может существовать очень короткие моменты времени в изломе металла при совместном деформировании двух частей металла в местах их соприкосновения или после его механической обработки. После механической зачистки поверхности металла в атмосфере сухого воздуха на ней образуется оксидная пленка. На воздухе микровыступы и впадины поверхности многих металлов, кроме так называемых благородных (золото, платина и др.), мгновенно покрываются пленками окислов, а также слоями адсорбированных молекул газов, воды и жировых веществ. Толщина и последовательность расположения таких пленок может быть различной. Однако непосредственно на поверхности металла обычно находится пленка окислов (рис.02-04, слой А). Рис. 02-04. Строение поверхности металла в воздушной атмосфере: А — глубинный слой металла, не затронутый пластическими деформациями; Б — поверхностный слой полностью разориентированных кристаллитов с прослойкам окислов; В — окисный слой, характерная полярность внутренних и внешних границ, а также полярность верхних слоев металла показаны знаками «+» и «-»; Г — адсорбированный слой кислородных анионов и нейтральных молекул воздуха; Д — слой водяных молекул; Е — слой жировых молекул; Ж — ионизированные пылевые частицы Слой окислов сохраняет на границе с металлом отрицательный потенциал против положительного потенциала самого металла. Наружная поверхность слоя окислов имеет положительный потенциал и они адсорбируют кислород, имеющий отрицательный потенциал. Таким обра зом, поверхность металла покрывается двумя двойными электрическими слоями. Окисные пленки обычно очень хрупкие и обладают высокой твердостью. Кроме пленки окислов, поверхность металлов покрыта газовыми молекулами, жировыми пленками и парами воды. Толщина этих пленок различна. Например, толщина пленки паров воды составляет 50 - 100 молекул. Жировые слои имеют большую толщину. Полностью удалить масляные пленки с металла практически невозможно никакими растворителями, поскольку адсорбционная связь жировых молекул и металла представляет собой чисто электрическую связь. Полярные жировые молекулы образуют с металлом двойной электрический слой, что и обеспечивает весьма прочную связь металла и пленки одномолекулярной толщины. После промывки металла бензином слой органических молекул составляет 1 - 5 мкм, и только при особо тщательной обработке растворителями сохраняется жировая пленка толщиной 10 - 100 молекулярных слоев. Сложное строение реальной металлической поверхности существенно меняет картину взаимодействия поверхностей при их сближении. Образование прочного сварного соединения реальных металлов при сварке в твердой фазе совместным деформированием происходит в три условных этапа: 1) сближение свариваемых поверхностей; 2) возникновение металлического контакта; 3) создание прочного сварного соединения. Первый этап — сближение свариваемых поверхностей — характеризуется деформацией как микрошероховатостей, так и волнистостей. При сближении поверхностей с неровностями вначале возникает контакт в отдельных наиболее высоких точках. Для получения контакта по большей поверхности необходимо деформирование уже соприкасающихся участков. Чем больше должна быть площадь соприкосновения на поверхности сжимаемых металлов, тем, очевидно, больше нужно деформировать неровности, вступившие в контакт, и тем больше должна быть сжимающая сила. Фактором, затрудняющим сварку реальных металлов, являются окисные пленки, пленки жидкостей, газов и различного рода органических и иных загрязнений. Вследствие высокой относительной твердости окисных пленок образование между ними контакта значительной площади потребовало бы очень больших усилий. Соединение может возникнуть между окисными пленками, но из-за их высокой хрупкости оно обладает плохими прочностными свойствами — малой пластичностью, низким сопротивлением ударным нагрузкам и т. п. и обычно легко разрушается. Поэтому для получения прочных соединений окисные пленки должны быть удалены из места сварки. Еще более нежелательное влияние оказывают загрязняющие поверхность органические пленки (масла). Органические пленки достаточной толщины предотвращают возможность сварки контактирующих металлов и поэтому они также должны быть предварительно удалены со свариваемых поверхностей. Однако в зависимости от толщины слоев окислов и адсорбционных пленок в процессе сближения металлические связи могут создаваться на немногих микроскопических островках. Второй этап начинается в процессе сближения и деформирования поверхностных слоев и неровностей. Этот этап характеризуется увеличением площади металлического контакта свариваемых поверхностей и возникновением общих кристаллов на них. В начале формирования металлического контакта кристаллиты разделены пленками сложного состава. При деформировании сжатые свариваемые поверхности не контактируют с атмосферой, поэтому новых пленок не образуется, а имеющиеся хрупкие окисные пленки вследствие увеличения площади контакта разрушаются, жидкие и газовые пленки вытесняются и частично диффундируют в глубь металла, в результате ювенильные поверхности приходят в непосредственное соприкосновение. В контактах двух металлических поверхностей действие межатомных сил притяжения начинается на расстояниях 4÷5·10-8 см. При достижении таких расстояний уже возможно образование металлических связей, т. е. возможен процесс, который мы называем сваркой. Таким образом, только при значительном сближении, разрушении и удалении поверхностных пленок границы раздела становятся сходными по структуре и природе с межкристаллитными прослойками. Третий этап характеризуется различного рода перемещениями на определенные расстояния относительно больших масс частиц вследствие диффузии. Этот процесс требует значительного времени. Рассмотренные этапы образования сварного соединения относятся главным образом к таким процессам сварки в твердой фазе, при которых можно выделить этапы: сближения, образования физического контакта и создания прочного сварного соединения. Очевидно, это имеет отношение к холодной и диффузионной сварке и к сварке трением. Процесс сварки при действии импульсных давлений — сварка взрывом, электромагнитным импульсом, ультразвуковая — будет проходить в те же три этапа, однако отличия состоят в том, что отдельные этапы в этих методах сварки трудно различимы вследствие малого времени образования сварного соединения. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |