|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
В 1. Легирующие элементы в сталях. Их влияние на превращения в сталях при нагревеЛегирующие элементы в стали изменяют положение критических точек стали, изменяют величину критической скорости закалки и влияют на образование и устойчивость карбидов в стали. Изменение положения критических точек стали выражается расширением или сужением области аустенита, т, е. удалением или сближением критических точек. Легирующие элементы, расширяющие область аустенита, называются элементами-аустенитизаторами. К ним, помимо углерода, относятся марганец, никель, азот, медь. При введении больших количеств этих элементов в сталь область а-феррита исчезает и сталь приобретает устойчивую аустенитную структуру. Легирующие элементы, сужающие область аустенита, называются элементами-ферритизаторами. К ним относятся: хром, кремний, алюминий, ванадий, молибден, вольфрам, титан, ниобий. При введении больших количеств этих элементов в сталь область аустеннта исчезает и сталь приобретает устойчивую ферритную структуру. Аустенитные и ферритные высоколегированные стали находят широкое применение в качестве кислотостойких, окалиностойких и жаропрочных специальных сталей. Все легирующие элементы (за исключением редко применяемого кобальта) снижают критическую скорость закалки, сообщая стали более высокую восприимчивость к закалке. Такая способность стали называется прокаливаемостью стали. Чем больше легирующих элементов в стали, тем больше прокаливаемость стали и тем вероятнее получение мартенсита в околошовной зоне при сварке. Легирующие элементы в стали: а) не образующие карбидов: кремний, никель, алюминий, медь; б) образующие простые карбиды: марганец, хром, молибден, ванадий, вольфрам, титан, ниобий; в) образующие совместно с железом сложные карбиды: марганец, хром, молибден, вольфрам. Растворение и выпадение карбидов в процессе нагрева и охлаждения сталей вызывают значительное изменение их свойств. Влияние на превращения в сталях при нагреве Наличие легирующих элементов в стали смещает температурные границы протекания процессов при нагревании. Присутствие легирующих элементов вызывает прежде всего сдвиг критических точек по температуре по отношению к их положению в нелегированной стали, т. е. на диаграмме Fe-Fe3C. В сталях, легированных одним элементом, смещение критических точек, в общих чертах, направлено так же, как в бинарных сплавах этого элемента с железом. Объясняется это тем, что углерод в количествах, допускаемых в стали, не изменяет принципиально температурных границ существования равновесных ферритной и аустенитной фаз по сравнению с тем, что наблюдается в бинарных сплавах железа с легирующими элементами. Соответственно элементы группы никеля (Ni, Со, Мп, Си) понижают критические точки Асх и Ас3, а элементы группы хрома (Сг, Мо, W, V, Si, Ti, А1, В, Nb, Zr) их повышают. При содержании в стали одновременно двух и более легирующих элементов, влияющих на критические точки стали в одном и том же направлении, обычно критические точки оказываются соответственно пониженными или повышенными больше, чем в результате воздействия только одного из присутствующих элементов. В случае содержания в стали элементов с противоположным влиянием на критические точки конечный эффект может быть различным и зависит от количественного соотношения элементов. Влияние элементов проявляется также в сдвиге критических точек не только по температуре, но и по концентрации. Легированная сталь иллюстрирует действие элементов на концентрацию углерода в эвтектоиде. Легирующие элементы понижают содержание углерода в эвтектоиде и, следовательно, сдвигают эвтектоидную точку в сторону меньших концентраций. Большинство элементов понижает также и предел растворимости углерода в т-железе. Присутствие легирующих элементов в стали крайне существенно отражается на скорости превращений при нагревании. Последнее объясняется тем, что легированные карбиды характеризуются значительно большей устойчивостью, чем нелегированные, а также тем, что скорость диффузии углерода в присутствии ряда легирующих элементов (Мп, Сг, W, Мо и др.) сильно замедляется. Существенное значение имеет также чрезвычайно низкая скорость диффузии самих легирующих элементов в стали. Между тем процессы превращения в стали при нагревании реализуются исключительно в результате перемещений атомов углерода и легирующих элементов за счет диффузии. Понятно поэтому, что указанные факторы оказывают решающие влияния на скорость превращений при нагревании. Практически превращения в легированной стали при нагревании сильно замедляются, протекают при непрерывном нагреве в широком интервале температур и требуют для своего завершения значительно больших промежутков времени, чем это необходимо для превращений в углеродистой стали. В сложнолегированной стали, содержащей в своем составе активные карбидообразующие элементы, эти превращения как в отношении полного растворения карбидов, так и выравнивания (гомогенизации) состава аустенита в условиях обычного нагрева, как правило, не успевают пройти до конца. Например, даже в случае нагрева до температур, на несколько сотен градусов превышающих равновесные критические точки, обычно не достигается полного растворения карбидов титана, циркония, ниобия и ванадия. Влияние легирующих элементов на превращения аустенита при охлаждении Установлено, что все легирующие элементы, кроме кобальта, повышают устойчивость переохлажденного аустенита и уменьшают скорость его превращения.. Среди главнейших легирующих элементов Мп, Сг и Мо наиболее резко увеличивают устойчивость переохлажденного аустенита; Ni, Си и W действуют в этом направлении значительно слабее, a Si и А1 наименее эффективно. Необходимо, однако, отметить, что карбидообразующие элементы повышают устойчивость аустенита лишь в том случае, когда они находятся в твердом растворе. Если же карбидообразующие элементы не переведены при нагревании в твердый раствор (аустенит) и сохраняются целиком в карбидах, то под влиянием легирования может наблюдаться даже обратный эффект, т. е. понижение устойчивости переохлажденного аустенита, как это, например, имеет место при невысоком нагреве стали, легированной ванадием. Аустенит в этом случае будет обеднен не только легирующими карбидообразующими элементами, но и углеродом, поскольку часть его оказывается связанной в нерастворенных карбидах. Влияние легирующих элементов на изотермические превращения переохлажденного аустенита заключается не только в повышении его устойчивости, но также, в ряде случаев, в смещении по температуре зон его минимальной устойчивости. В сталях, легированных карбидообразующими элементами, вместо одной зоны минимальной устойчивости обнаруживаются две такие зоны, разделенные зоной более высокой устойчивости аустенита. Здесь отмечены также получающиеся продукты превращения аустенита в различных температурных областях. Область перлитного, превращения (1-я ступень) (пластинчатые сорбит и троостит) Область игольчато-трооститнего превращения (2-я ступень) (игольчатый троостит). Область мартенситного превращения(3-я ступень) (мартенсит, аустенит) В то же время легирующие элементы оказывают неоднозначное действие на степень устойчивости переохлажденного аустенита и на скорость его диффузионного распада в различных температурных зонах. Таким образом, в результате легирования существенно изменяется соотношение скоростей превращения в различных зонах диффузионного распада аустенита. У силнолегированных сталей, особенно с высоким содержанием углерода, мартенситная точка М может быть расположена ниже комнатной температуры. Практически это означает, что при одинаковых размерах (сечениях) изделий из легированной и нелегированной сталей при закалке первой стали возможно применение менее интенсивных охладителей или, иначе говоря, при равной скорости охлаждения сквозная закалка на мартенсит может быть достигнута в значительно более крупных сечениях изделий из легированной стали, чем из простой углеродистой стали. Повышение прокаливаемости стали, равно как и обеспечение возможности применения менее энергичных охладителей при закалке, с целью ослабления вероятности образования трещин и уменьшения коробления, являются одними из важнейших целей ее легирования. Поскольку легирующие элементы в большинстве случаев понижают мартенситную точку М и, следовательно, сокращают температурную зону между этой точкой и комнатной температурой, охлаждение стали со скоростью выше критической скорости закалки (закалка на мартенсит) отмечается появлением в легированной стали значительно большего количества остаточного аустенита, чем в простой углеродистой стали, с равным содержанием углерода. Присутствие никеля в стали вызывает смещение кривых изотермического распада аустенита вправо и понижение температуры начала мартенситовых превращений (Mн). Подобное влияние на превращение аустенита при охлаждении оказывают все легирующие элементы, за исключением кобальта. Легирующие элементы понижают критическую скорость закалки и тем больше, чем выше их содержание в стали. Повышение устойчивости переохлажденного аустенита и в связи с этим уменьшение критической скорости закалки сталей, легированных элементами группы никеля, вызывается тем, что легирующие элементы, понижают температуру начала распада аустенита в перлит. Легирующие элементы группы хрома повышают устойчивость переохлажденного аустенита и уменьшают критическую скорость закалки. Весьма важной особенностью действия легирующих элементов является возможность получения устойчивого аустенитного состояния в стали при атмосферной температуре. Это также объясняется тем, что многие легирующие элементы сдвигают точку начала мартенситного превращения (М) в сторону более низких температур, так что эта точка может быть расположена ниже атмосферной (комнатной) температуры. Получение устойчивого аустенита при этом условии возможно в случае отсутствия изотермического (диффузионного) его распада при комнатной температуре. Возможность получения подобных состояний в стали составляет также одну из важных целей ее легирования. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |