АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Системный подход к политике

Читайте также:
  1. V. Употребите подходящие прилагательные в требуемом падеже.
  2. Алекс резко передумал подходить, но, будто не заметив их, направился к плакату, который висел на стене у гардероба.
  3. Альтернативные подходы в области информационной подготовки
  4. Альтернативный подход Кэрол Гиллиган
  5. Американский подход
  6. Аналитический подход к исследованию величин в критической точке
  7. Анкета оценки уровня обучения студента курса «Системный анализ»
  8. Библиотечная процедура read- и процедура, обрабатывающая системный вызов
  9. Билдерский подход – хорошо или плохо?
  10. Биологический подход
  11. Бихевиористский подход
  12. БЛЕСК И НИЩЕТА КЛАССОВОГО ПОДХОДА

 

Составляющим понятий «системный анализ», «системная проблема», «системное исследование» является слово «система», которое появилось в Древней Элладе 2000—2500 лет назад и первоначально означало: сочетание, организм, устройство, организация, строй, союз. Оно также выражало определенные акты деятельности и их результаты (нечто, поставленное вместе; нечто, приведенное в порядок).

Первоначально слово «система» было связано с формами социально-исторического бытия.

Перенос значения слова с одного объекта на другой и вместе с тем превращение слова в обобщенное понятие совершаются поэтапно. Метафоризация слова «система» была начата Демокритом (460—360 до н. э.), древнегреческим философом, одним из основоположников материалистического атомизма. Образование сложных тел из атомов он уподобляет образованию слов из слогов и слогов из букв. Сравнение неделимых форм (элементов с буквами) — один из первых этапов формирования научно-философского понятия, обладающего обобщенным универсальным значением.

На следующем этапе происходят дальнейшая универсализация значения слова, наделение его высшим обобщенным смыслом, что позволяет применять его и к физическим, и к искусственным объектам. Универсализация может осуществляться двояко — или в процессе мифотворчества, т. е. построения мифа на основе метафоры [характерно для одного из основателей объективного идеализма Платона (427—347 до н. э.)], или же путем воссоздания философско-рациональной картины мироздания и человеческой культуры, т. е. трансформирования и развертывания метафоры в философской системе [характерно для Аристотеля (384—322 до н. э.), колеблющегося между материализмом и идеализмом.

Итак, в античной (древней) философии термин «система» характеризовал упорядоченность и целостность естественных объектов.

Большую роль в становлении новой трактовки системности бытия сыграло открытие Н. Коперника (1473—1543). Он создал Гелиоцентрическую систему мира, объяснив, что Земля, как и другие планеты, обращается вокруг Солнца и, кроме того, вращается вокруг своей оси. Телеологизм (телеология — учение о совершенстве, учение о конечных причинах — воззрение, объясняющее закономерную связь явлений природы не объективными причинами, а целями, установленными Божьей волей), отягощавший представления Коперника, был преодолен позднее Г. Галилеем (1564—1642) и И. Ньютоном (1642—1727).

Наука эпохи Возрождения выработала определенную концептуальную систему. Ее важнейшие категории — вещь и свойства, целое и часть, субстанция и атрибуты. Вещь трактовалась как сумма отдельных свойств.

Важнейшая особенность представлений о системности предмета познания, характерная для науки эпохи Возрождения, состоит в выдвижении на первый план каузального, а не телеологического способа объяснения реальности.

Глубокую и основательную разработку идея системной организации научного знания получила в немецкой классической философии. Структура научного знания, принципы и основания построения теоретических систем стали в ней предметом специального философского, логико-методологического анализа.

Немецкий математик и философ И.Г. Ламберт (1728—1777) подчеркивал, что «всякая наука, как и ее часть, предстает как система, поскольку система есть совокупность идей и принципов, которая может трактоваться как целое. В системе должны быть субординация и координация». Следует отметить, что он анализировал системность науки на основе обобщенного рассмотрения систем вообще, построения общей системологии.

Новый этап в интерпретации системности научного знания связан с именем И. Канта (1724—1804). Его заслуга состоит не только в четко осознанном системном характере научно-теоретического знания, но и в превращении этой проблемы в методологическую, в выявлении определенных процедур и средств системного конструирования знания.

Ограниченность кантовского понимания системности знания состоит в том, что конструктивно-методологические принципы образования научных систем являются у него характеристиками лишь формы, а не содержания знания.

Эту линию в еще большей мере проводит И.Г. Фихте (1762—1814), который считает, что принципы полагания формы знания являются одновременно принципами полагания и его содержания. Исходный тезис Фихте — научное знание есть системное целое. Фихте является родоначальником того направления в классической немецкой философии, которое останавливается на вычленении формально-логических принципов систематизации сложившегося знания, ограничивая тем самым системность знания систематичностью его формы. Это привело к отождествлению системности научного знания и его систематического изложения. Это направление сосредоточивает свое внимание не на научном исследовании, а на изложении результатов знания, систематического представления теоретического знания. Такой подход особенно проявился у последователей Канта и Фихте — К. Шмида, Я. Фриза и др.

Г. Гегель (1770—1831), объективный идеалист, исходит из единства содержания и формы знания, из тождества мысли и действительности и предлагает историческую трактовку становления системы в соответствии с принципом восхождения от абстрактного к конкретному. Однако в силу отождествления метода и системы, в силу телеологического истолкования истории знания, он не смог предложить методолого-конструктивных средств для формирования системных научных образований и фактически лишил все предшествующие ему теоретические и философские построения статуса системы. По сути дела, они оказались в его интерпретации лишь абстрактным выражением, превращенной формой его системы, претендовавшей на единственно возможную и абсолютно значимую.

Теоретическое естествознание XIX—XX вв. исходит из различения предмета и объекта знания. Подчеркивая активный характер человеческого познания, новый способ мысли трактует предмет исследований как нечто созданное и создаваемое человеком в ходе освоения природы. Поднимается роль моделей в познании.

Целое понимается уже не как простая сумма, а как функциональная совокупность, которая формируется некоторым заранее задаваемым отношением между элементами. При этом фиксируется наличие особых интегративных характеристик данной совокупности — целостность, несводимость к составляющим элементам. Сама эта совокупность, отношение между элементами (их координация, субординация и т.д.) определяются некоторым правилом или системообразующим принципом. Этот принцип относится как к порождению свойств целого из элементов, так и к порождению свойств элементов из целого. Системообразующий принцип позволяет не только постулировать те или иные свойства элементов и системы, но и предсказывать возможные элементы и свойства системной совокупности.

Марксистская гносеология выдвинула определенные принципы анализа системности научного знания. К ним относятся историзм, единство содержательной и формальной сторон научного знания, трактовка системности не как замкнутой системы, а как развивающейся последовательности понятий и теорий. При таком подходе системность знаний предполагает дальнейшее совершенствование системы понятий.

Попытки разработать общие принципы системного подхода были предприняты врачом, философом и экономистом А.А. Богдановым (1873— 1928) в работе «Всеобщая организационная наука (тектология)». Исследования, проведенные уже в наши дни, показали, что важные идеи и принципы кибернетики, сформулированные Н. Винером и особенно У. Росс Эшби, значительно раньше, хотя и в несколько иной форме, были выражены Богдановым. В еще большей мере это относится к общей теории систем Л. Фон Берталанфи.

Австрийский биолог и философ Л. Фон Берталанфи (1901—1972) первым из западных ученых разработал концепцию организма как открытой системы и сформулировал программу построения ОТС. В своей теории он обобщил принципы целостности, организации, эквифинальности (достижения системой одного и того же конечного состояния при различных начальных условиях) и изоморфизма.

Начиная со своих первых работ, Л. Берталанфи проводит мысль о неразрывности естественно-научного (биологического) и философского (методологического) исследований... Сначала была создана теория открытых систем, граничащая с современной физикой, химией и биологией. Классическая термодинамика исследовала лишь закрытые системы, т. е. не обменивающиеся веществом с внешней средой и имеющие обратимый характер. Попытка применения классической термодинамики к живым организмам (начало XX в.) показала, что, хотя при рассмотрении органических явлений использование физико-химических принципов имеет большое знание, так как в организме имеются системы, находящиеся в равновесии (характеризующимся минимумом свободной энергии и максимумом энтропии), однако сам организм не может рассматриваться как закрытая система в состоянии равновесия, ибо он не является таковым. Организм представляет собой открытую систему, остающуюся постоянной при непрерывном изменении входящих в нее веществ и энергии (так называемое состояние подвижного равновесия).

В 1940—50 гг. Л. Берталанфи обобщил идеи, содержащиеся в теории открытых систем, и выдвинул программу построения ОТС, являющейся всеобщей теорией организации. Проблемы организации, целостности, направленности, телеологии, саморегуляции, динамического взаимодействия весьма актуальны и для современной физики, химии, физической химии и технологии, а не только для биологии, где подобные проблемы встречаются повсюду. Пока что такие понятия были чужды классической физике. Если до сих пор унификацию наук видели обычно в сведении всех наук к физике, то, с точки зрения Л, Берталанфи, единая концепция мира может быть, скорее, основана на изоморфизме законов в различных областях. В результате он приходит к концепции синтеза наук, которую и противоположность редукционизму (т. е. сведению всех наук к физике) называет перспективизмом.

Построенная теория организации является специальной научной дисциплиной. Вместе с тем она выполняет определенную методологическую функцию. В силу общего характера исследуемого предмета (системы) ОТСдает возможность охватить одним формальным аппаратом обширный круг специальных систем. Благодаря этому она может освободить ученых от массового дублирования работ.

К числу недостатков ОТС Л. Берталанфи относятся неполное определение понятия «система», отсутствие особенностей саморазвивающихся систем и теоретического исследования связи, а также условий, при которых система модифицирует свои формы. Но основной методологический недостаток его теории заключается в утверждении автора о том, что она выполняет роль философии современной науки, формируя философски обобщенные принципы и методы научного исследования. В действительности это не так. Ибо для философского учения о методах исследования необходимы совершенно иные (новые) исходные понятия и иная направленность анализа: абстрактное и конкретное специфически мысленное знание, связь знаний, аксиоматическое построение знаний и др., что отсутствует в ОТС.

Однако, учитывая большое методологическое значение работы Л. Берталанфи (Общая теория систем — обзор проблем и результатов"рассмотрим различные направления в разработке теории систем. В соответствии с его взглядами, системная проблематика сводится к ограничению применения традиционных аналитических процедур в науке. Обычно системные проблемы выражаются в полу-метафизических понятиях и высказываниях, подобных, например, понятию «эмерджентная эволюция» или утверждению «целое больше суммы его частей», однако они имеют вполне определенное операционное значения. При применении «аналитической процедуры» некоторая исследуемая сущность разлагается на части, и, следовательно, затем она может быть оставлена или воссоздана из собранных вместе частей, причем эти процессы возможны как мысленно, так и материально. Это основной принцип «классической» науки, который может осуществляться различными путями: разложением исследуемого явления на отдельные причинные цепи, поисками «атомарных» единиц в различных областях науки и т. д. Научный прогресс показывает, что этот принцип классической науки, впервые сформулированный Галилеем и Декартом, приводит к большим успехам при изучении широкой сферы явлений.

Применение аналитических процедур требует выполнения двух условий. Во-первых, необходимо, чтобы взаимодействие между частями данного явления отсутствовало или было бы пренебрежимо мало для некоторой исследовательской цели. Только при этом условии части можно реально, логически или математически «извлекать» из целого, а затем «собирать». Во-вторых, отношения, описывающие поведение частей, должны быть линейными. Только в этом случае имеет место отношение суммативности, т. е. форма уравнения, описывающего поведение целого, такова же, как и форма уравнений, описывающих поведение частей; наложение друг на друга частных процессов позволяет получить процесс в целом и т.д.

Автор намеренно использует довольно расплывчатое выражение — «подходы», поскольку они логически неоднородны, характеризуются различными концептуальными моделями, математическими средствами, исходными позициями и т.д. Однако все они являются теориями систем. Если оставить в стороне подходы в прикладных системных наследованиях, таких как системотехника, исследование операций, линейное и нелинейное программирование и т.д., то наиболее важными являются следующие подходы:

«Классическая» теория систем. Эта теория использует классическую математику и имеет цели: установить принципы, применимые к системам вообще или к их определенным подклассам (например, к закрытым и открытым системам); разработать средства для их исследования и описания и применить эти средства к конкретным случаям. Учитывая достаточную общность получаемых результатов, можно утверждать, что некоторые формальные системные свойства относятся к любой сущности, которая является системой (к открытым системам, иерархическим системам и т.д.), даже если ее особая природа, части, отношения и т.д., не известны или не исследованы. Примерами могут служить: обобщенные принципы кинетики, применимые, в частности, к популяциям молекул или биологических существ, т.е. к химическим и биологическим системам; уравнения диффузии, используемые в физической химии и для анализа распространения слухов; понятия устойчивого равновесия и модели статистической механики, применимые к транспортным потокам; аллометрический анализ биологических и социальных систем.

Проведение системных исследований означает прогресс в анализе проблем, которые ранее не изучались, считались выходящими за пределы науки или чисто философскими.

Таким образом, модели, выраженные в обычном языке, оставляют себе место в теории систем. Идея системы сохраняет значение даже там, где ее нельзя сформулировать математически или где она остается скорее направляющей идеей, чем математической конструкцией. Например, у нас может не быть удовлетворительных системных понятий для социологии; однако само понимание того, что социальные сущности являются системами, а не суммами социальных атомов, или того, что история имеет дело с системами {хотя бы и плохо определенными), называемыми цивилизациями, которые подчиняются общим для систем принципам, подразумевает важную переориентацию в рассматриваемых научных областях.

Итак, подводя итоги, ОТС у Л. Берталанфи выступает в двух смыслах. В широком — как основополагающая, фундаментальная наука, охватывающая всю совокупность проблем, связанных с исследованием и конструированием систем. В теоретическую часть включаются 12 направлений, приведенных выше. В узком смысле — ОТС, стремящаяся вывести из общего определения системы как комплекса взаимодействующих элементов понятия, относящиеся к организованным целым (взаимодействие, сумма, централизация, фатальность и т.д.), и применяющая их к анализу конкретных явлений. Прикладная область общей теории систем включает, согласно Берталанфи: 1) системотехнику; 2) исследование операций; 3) инженерную психологию.

Системные исследования — вся совокупность научных и технических проблем, которые при всей их специфике и разнообразии сходны в понимании и рассмотрении исследуемых ими объектов как систем, т. е. множества взаимосвязанных элементов, выступающих в виде единого целого.

Соответственно этому системный подход — эксплицитное (разъяснительное) выражение процедур представления объектов как систем и способов их описания, объяснения, предвидения, конструирования и т. д.

Общая теория систем, таким образом, выступает в этом случае как обширный комплекс научных дисциплин. Следует, однако, отметить, что при таком истолковании в известной мере теряется определенность задач теории систем и ее содержания. Строго научной концепцией (с соответствующим аппаратом, средствами и т.д.) можно считать лишь общую теорию систем в узком смысле. Что же касается общей теории систем в широком смысле, то она или совпадает с общей теорией систем в узком смысле (один аппарат, одни исследовательские средства и т.д.), или представляет собой действительное расширение и обобщение общей теории систем в узком смысле и аналогичных дисциплин, однако тогда встает вопрос о развернутом представлении ее средств, методов, аппарата и т.д. Без ответа на этот вопрос общая теория систем в широком смысле фактически остается лишь некоторым проектом (пусть даже очень заманчивым) и вряд ли может быть развита в строгую научную теорию.Общая теория систем в широком смысле (по Берталанфи) — фундаментальная наука, охватывающая всю совокупность проблем, связанных с исследованием и конструированием систем.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)