|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Приближение Борна-Оппенгеймера
Суть приближения Борна-Оппенгеймера заключается в разделении движения электронов и ядер. Это легко понять, воспользовавшись простыми рассуждениями с точки зрения классической физики. Очевидно, имея намного меньшую массу по сравнению с массой ядер, электроны в молекуле более подвижны по сравнению с ядрами, то есть их движения совершаются в поле практически неподвижных ядер.[3] За время заметного смещения ядра электрон успевает много раз пройти вокруг него. Именно такая классическая модель позволяет рассматривать движение ядер и электронов в отдельности. Поскольку приближение Борна-Оппенгеймера является квантово -механическим, его нужно обосновать на языке квантовой механики. Для этого вводится параметр малости или малый параметр
m – масса электрона, а M – масса ядра. По этому параметру малости проводится разложение в ряд гамильтониана и волновой функции. Обозначим совокупность координат ядра
Тогда Здесь, как обычно при разложении в ряд
где Тогда решение уравнения Шредингера естественно искать в виде:
Подставим (III.2), (III.3) и (III.4) в стационарное уравнение Шредингера
Это уравнение для фиксированных ядер и фиксированные координаты ядер
Первое приближение получается при решении уравнения вида
В этом легко убедиться, подставив разложение первого порядка для
Раскрывая скобки, получаем уравнение:
Сокращая одинаковые члены
или
Поскольку
Таким образом, в приближении Борна-Оппенгеймера должно выполняться условие:
Физический смысл этого условия заключается в том, что фиксированные координаты ядер
Но Приближение, в котором можно провести разделение электронного и ядерного движений и одновременно с этим учитывается слабое взаимодействие между этими двумя типами движений, называется адиабатическим. Можно сказать, что адиабатическое приближение по сути дела является приближением Борна – Оппенгеймера с учетом слабого взаимодействия между движением ядер и электронов. Эти два приближения очень близки, но, строго говоря, они разные. В подавляющем большинстве случаев уже само приближение Борна-Оппенгеймера позволяет получить очень хорошее соответствие с экспериментом, то есть описание реальной системы. Адиабатическая поправка к приближению Борна-Оппенгеймера уменьшается с ростом массы ядер. Например, для энергии диссоциации молекулы Н2 она равна ~0,02%, а для молекулы D2 ~0,007%. За исключением простых задач (непосредственное значение которых для химии невелико), уравнение Шредингера не может быть решено точно. И в связи с этим мы начали рассматривать основы для использования приближенных методов к его решению. И в качестве такой основы мы рассмотрели приближение Борна-Оппенгеймера, позволяющее разделить движение ядер и электронов. Отметим, что в более общей формулировке приближение Борна-Оппенгеймера подразумевает возможность разделения также и других видов движений, например, колебательного, поступательного, вращательного, возбуждения ядерного спина и т.д.. До того, как рассматривать методы решения уравнения Шредингера с гамильтонианом, построенным на основе приближении Борна-Оппенгеймера, то есть с неподвижными ядрами, имеет смысл вспомнить о двух основополагающих методах квантовой механики для приближенного решения уравнения Шредингера – вариационном методе и методе теории возмущений. Здесь мы рассмотрим лишь вариационный метод и вариационный принцип, на котором он основан, а метод теории возмущений рассматривается в спецкурсе «Избранные главы квантовой химии».
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |