АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Возрастание и убывание функций. Экстремумы функции

Читайте также:
  1. II. Основные задачи и функции
  2. III. Предмет, метод и функции философии.
  3. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  4. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ
  5. А. Средняя квадратическая погрешность функции измеренных величин.
  6. Абстрактные классы и чистые виртуальные функции. Виртуальные деструкторы. Дружественные функции. Дружественные классы.
  7. Адаптивные функции
  8. Администраторы судов, их функции
  9. Аналитические функции
  10. Арендная плата: состав и функции
  11. Асимптоты графика функции
  12. Б) Вычисление тригонометрических функций.

Определение. Числовая функция y=f(x) называется монотонно возрастающей (убывающей) на множестве ее области определения, если большему зна­чению аргумента соответствует большее (меньшее) значение функции.

Приращение функции и приращение аргумента возрастающей (убываю­щей) функции имеют одинаковые (противоположные) знаки.

Теорема 1 (необходимое условие возрастания (убывания) функции). Если дифференцируемая функция возрастает (убывает) на некотором интервале, то в каждой точке этого интервала производная этой функции неотрицательна (неположительна).

Теорема 2 (достаточное условие возрастания (убывания) функции). Если производная функции на некотором интервале неотрицательна (неположительна), то на этом интервале функция воз­растает (убывает).

Пусть функция y=f(x) определена на интервале (а,в).

Определение. Точка называется точкой локального мак­симума (минимума) функции, если найдется некоторая окрестность этой точки, для всех точек которой будет выполняться условие:

Определение. Точки локального максимума и минимума называют точками экстремума, а значения функции в этих точках называют экстремумами функции.

Теорема 3 (необходимое условие существования экстремума функции). Если точка является точкой локального максимума (минимума) функции, то производная в этой точке равна нулю или не существует.

Данный признак не является достаточным для существования экс­тремума, т.е. из того, что производная равна нулю или не существует в некоторой точке, не следует, что в этой точке есть экстремум.

Точки, в которых первая производная равна нулю или не существу­ет, называют критическими точками первого рода. Если функция имеет экстремумы, то они могут быть только в критических точках.

Пусть функция y=f(x) определена и непрерывна в некоторой окре­стности точки и дифференцируема в этой окрестности (за исключени­ем, быть может, точки ).

Теорема 4 (первое достаточное условие существования экстремума). Если первая производная функции в точке хо равна нулю или не существует и при пе­реходе через нее производная меняет знак, то данная точка является точ­кой экстремума, причем если знак меняется с "+" на "-", то это точка мак­симума, с "-" на "+" - точка минимума.

Теорема 5 (второе достаточное условие существования экстремума). Если функции y=f(x) определена и дважды дифференцируема в некоторой окрестности точки , причем , а , то в точке функция имеет максимум, если , и минимум, если .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)