Теоремы о пределах
Теорема о существовании предела: Функция не может иметь двух различных пределов в одной точке.
Теорема 1. Предел постоянной равен самой постоянной:
Теорема 2. Если каждое слагаемое алгебраической суммы функций имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов:
Теорема 3. Если каждый из сомножителей произведения конечного числа функций имеет предел при ,то и произведение имеет предел при , причем предел произведения равен произведению пределов:
Следствие 1. Постоянный множитель можно выносить за знак предела:
Следствие 2. Предел степени равен степени предела:
Теорема 4. Если функции и имеют пределы при ,причем , то и их частное имеет предел при ,причем предел частного равен частному пределов:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | Поиск по сайту:
|