|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Побудова структурної схеми для вирішення диференційного рівняння першого порядку із заданими початковими умовами
Нехай задане диференційне рівняння першого порядку з заданими початковими умовами . Перетворимо це рівняння у зручний вигляд для побудови структурної схеми. Старша похідна залишається зліва, всі інші доданки – справа. Таким чином, рівняння матиме наступний вигляд . Створення структурної схеми для вирішення диференційного рівняння будь-якого порядку починається з вибору кількості інтегруючих блоків (Integrator). Ця кількість залежить від порядку рівняння. Так як задане диференційне рівняння першого порядку, то структурна схема обмежиться одним інтегратором. На вході інтегратора буде похідна від функції , на виході – сама функція , як показано на рис. 7.69.
Рис. 7.69. Початок створення структурної схеми для вирішення диференційного рівняння першого порядку Наступним кроком є визначення кількості доданків, які утворюють похідну. Як видно з останнього рівняння, таких доданків буде три: , та . Таким чином до входу інтегратора підключається суматор (Sum) з трьома входами (два додатних та один від’ємний). Так як диференціювання відбувається за змінною , то для підключення першого доданку необхідно створити цю змінну за допомогою блока Sine Wave та помножити цей сигнал на константу 1/2 (блок Gain). Ця частина структурної схеми зображена на рис. 7.70. Рис. 7.70. Другий етап створення структурної схеми для вирішення диференційного рівняння першого порядку
На другий додатній вхід суматора підключається константа (блок Constant) 3/2, а на від’ємний вхід – сигнал y з вихода інтегратора, помножений на 5 за допомогою блоку Gain. Таким чином, структурна схема диференційного рівняння першого порядку складена. Для виводу до робочої області масиву функції y на вихід інтегратора підключається блок To Workspace з назвою «y» та форматом даних «Array». Для створення сигналу часу t використаємо блок Clock та також підключимо його до блоку To Workspace з назвою «t» та форматом даних «Array». Також у блоці Integrator в параметрі Initial Condition необхідно задати початкові умови, тобто поставити 1. Створена структурна схема показана на рис. 7.71. Рис. 7.71. Структурна схема для вирішення диференційного рівняння першого порядку
Час моделювання підбирається експериментальним шляхом до появи усталеного руху. У даному прикладі він підібран 20 секунд. Програма у М-файлі для побудови графіка рішення заданого рівняння біде наступною figure; %створення графічного вікна plot(t,y,'b-','LineWidth',2); %побудова графіка рішення xlabel('Час t, c'); %підписи осей та графіка ylabel('Функція y'); title('Графік рішення диференційного рівняння першого порядку'); grid; %активація сітки Графік, побудований за даною програмою показан на рис. 7.72. Рис. 7.72. Графік вирішення диференційного рівняння першого порядку Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |