АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пример 6.2. Исследовать заданную функцию

Читайте также:
  1. X. примерный перечень вопросов к итоговой аттестации
  2. Буду на работе с драконом примерно до 21:00.
  3. Булевы функции. Способы задания. Примеры.
  4. В некоторых странах, например в США, президента заменяет вице-
  5. В примере
  6. В странах Востока (на примере Индии и Китая)
  7. Вания. Одной из таких областей является, например, регулирова-
  8. Вашим сообщениям, например, спеть «С днем рождения»
  9. Виды знания. Контрпример стандартному пониманию знания
  10. Власть примера. Влияние с помощью харизмы
  11. Внешний долг (внешняя задолженность): пример России
  12. Вопрос 11. Герои романтических поэм М. Ю. Лермонтова (на примере одного произведения).

Исследовать заданную функцию

Исследование функций и построение графиков рекомендуется проводить по следующей схеме:

 

1) найти область определения функции D(y)

2) исследовать функцию на непрерывность, найти точки разрыва функции, ее односторонние пределы в точках разрыва;

3) найти точки экстремума функции и определить интервалы ее монотонности;

4) найти точки перегиба графика функции и определить интервалы выпуклости и вогнутости графика;

5) найти наклонные асимптоты графика функции;

6) построить график, используя результаты предыдущих исследований.

Решение.

1) Область определения.

2) Исследование на непрерывность и классификация точек разрыва.

Заданная функция непрерывна всюду, кроме точки х = 4. Вычислим ее односторонние пределы в этой точке:

Таким образом, точка х = 4 является для заданной функции точкой разрыва второго рода, а прямая х = 4 – вертикальной асимптотой графика.

3) Исследование на экстремум и промежутки монотонности.

х 1 = – 2, х 2 = 10.

x (– ∞, – 2) – 2 (– 2, 4)   (4, 10)   (10, + ∞)
+   не сущ.   +
f (x) max   min

4) Исследование графика на выпуклость, вогнутость, точки перегиба.

Так как , то график заданной функции точек перегиба не имеет. Остается выяснить вопрос об интервалах его выпуклости и вогнутости:

x (– ∞, 4)   (4, + ∞)
не сущ. +
f (x)  

5) Исследование графика на наличие наклонных асимптот.

Таким образом, прямая – наклонная асимптота графика.

6) Построение графика.

Очевидно, график заданной функции пересекает ось Оу в точке (0; –5) и на основе обобщения результатов всех предыдущих исследований имеет вид, представленный на рис. 2.

Рис. 2

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)