АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема существования решения системы линейных уравнений

Читайте также:
  1. I. Правила поведения в условиях вынужденного автономного существования.
  2. I. Составление дифференциальных уравнений и определение передаточных функций
  3. I. Формирование системы военной психологии в России.
  4. I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
  5. II Съезд Советов, его основные решения. Первые шаги новой государственной власти в России (октябрь 1917 - первая половина 1918 гг.)
  6. II. Органы и системы эмбриона: нервная система и сердце
  7. II. Цель и задачи государственной политики в области развития инновационной системы
  8. II. Экономические институты и системы
  9. III. Мочевая и половая системы
  10. III. Органы и системы эмбриона: пищеварительная система
  11. IV Структура АИС. Функциональные и обеспечивающие подсистемы
  12. IV. Механизмы и основные меры реализации государственной политики в области развития инновационной системы

При решении системы линейных уравнений методом гаусса ответ на вопрос, совместна или несовместна данная система может быть дан лишь в конце вычислений. Однако часто бывает важно решить вопрос о совместности или несовместности системы уравнений, не находя самих решений. Ответ на этот вопрос даёт следующая теорема Кронекера-Капелли.

Пусть дана система линейных уравнений с неизвестными:

(10)

Для того, чтобы система (10) была совместной, необходимо и достаточно чтобы ранг матрицы системы

.

был равен рангу её расширенной матрицы

.

Причём, если , то система (10) имеет единственное решение; если же , то система имеет бесчисленное множество решений.

 

3.4 Линейная, однородная система уравнений с неизвестными

Рассмотрим однородную систему (все свободные члены равны нулю) линейных уравнений:

.

Эта система всегда совместна, так как она имеет нулевое решение .

В следующей теореме даны условия, при которых система имеет также решения, отличные от нулевого.

Терема. Для того, чтобы однородная система линейчатых уравнений имела нулевое решение, необходимо и достаточно, чтобы её определитель был равен нулю:

.

Таким образом, если , то решение - единственное. Если , то существует бесконечноё множество других ненулевых решений. Укажем один из способов отыскания решений для однородной системы трёх линейных уравнений с тремя неизвестными в случае .

Можно доказать, что если , а первое и второе уравнения непропорциональны (линейно независимы), то третье уравнение есть следствие первых двух. Решение однородной системы трёх уравнений с тремя неизвестными сводится к решению двух уравнений с тремя неизвестными. Появляется так называемое свободное неизвестное, которому можно придавать произвольные значения.

Пример 4. Найти все решения системы:

.

Решение. Определитель этой системы

.

Поэтому система имеет нулевые решения. Можно заметить, что первые два уравнения, например, непропорциональны, следовательно, они линейно независимые. Третье является следствием первых двух (получается, если к первому уравнению прибавить удвоенное второе). Отбросив его, получим систему двух уравнений с тремя неизвестными:

.

Полагая, например, , получим

.

Решая систему двух линейных уравнений, выразим и через : . Следовательно, решение системы можно записать в виде: , где - произвольное число.

Пример 5. Найти все решения системы:

.

Решение. Нетрудно видеть, что в данной системе только одно независимое уравнение (два других ему пропорциональны). Система из трёх уравнений с тремя неизвестными свелась к одному уравнению с тремя неизвестными. Появляются два свободных неизвестных. Найдя, например, из первого уравнения при произвольных и , получим решения данной системы. Общих вид решения можно записать , где и - произвольные числа.

 

Вопросы для самопроверки

Сформулируйте правило Крамера для решения системы линейных уравнений с неизвестными.

В чём сущность матричного способа решения систем?

В чём заключается метод Гаусса решения системы линейных уравнений?

Сформулируйте теорему Кронекера-Капелли.

Сформулируйте необходимое и достаточноё условие существования ненулевых решений однородной системы линейных уравнений.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)