АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Ранг матрицы

Читайте также:
  1. I. Определение ранга матрицы
  2. II. Умножение матрицы на число
  3. II. Элементарные преобразования. Эквивалентные матрицы.
  4. SWOT- анализ и составление матрицы.
  5. Алгоритм вычисления обратной матрицы.
  6. Алгоритм вычисления обратной матрицы.
  7. Алгоритм Гаусса вычисления ранга матрицы
  8. Алгоритм нахождения обратной матрицы
  9. Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.
  10. Б) с помощью обратной матрицы.
  11. Базисный минор и ранг матрицы. Теорема о базисном миноре
  12. Билет 21 Квадратичные формы, преобразование матрицы квадратичной формы при переходе к новому базису.

Пусть дана матрица из строк и столбцов. Выделим в ней произвольно строк и столбцов (, ). Элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу -го порядка. Определитель этой матрицы называется минором -го порядка матрицы .

Наивысший из порядков миноров, отличных от нуля, называется рангом матрицы . Так, если ранг матрицы , то это означает, что среди миноров порядка есть хотя бы один минор, не равный нулю, а все миноры высшего порядка (чем ) равны нулю.

При определении ранга матрицы приходится вычислять большое количество определителей. Чтобы облегчить этот процесс, используют специальные приёмы. Вначале введем понятие элементарных преобразований матрицы:

1.) умножение всех элементов какой-либо строки 9столбца) на число ;

2.) прибавление к элементам какой-либо строки (столбца) соответствующих элементов другой строки (столбца), умноженных на одно и то же число;

3.) перемена местами строк (столбцов) матрицы;

4.) отбрасывание строк (столбцов) матрицы, все элементы которых равны нулю;

Матрицы, полученные одна из другой при элементарных преобразованиях, называются эквивалентными. Эквивалентные матрицы имеют одинаковый ранг. .

Пример 5. Вычислить ранг матрицы

.

Решение: Используя элементарные преобразования получим:

. .

Так как минор второго порядка отличен от нуля, то .

 

Вопросы для самопроверки

Что называется матрицей? Как обозначается матрица и как определяется её размер?

Назовите виды матриц.

Как определяются линейные операции над матрицами и каковы их свойства?

Что называется произведением двух матриц? Каковы свойства произведений матриц?

Какая матрица называется обратной для данной матрицы? Всегда ли существует обратная матрица? Как можно найти обратную матрицу?

Что называется рангом матрицы и как его можно найти?

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)