АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Координаты векторов

Читайте также:
  1. III. Векторное произведение векторов, заданных координатами
  2. MathCad: понятие массива, создание векторов и матриц.
  3. V2: ДЕ 14 – Векторные пространства. Коллинеарность векторов.
  4. Б) вычитание векторов.
  5. Базис векторного пространства. Координаты вектора
  6. Базис. Координаты вектора в базисе
  7. Билет 19Декартовы прямоугольные координаты на плоскости и в пространстве
  8. Билет 6.Линейная зависимость и независимость векторов. Базис на плоскости и в пространстве
  9. Билет 7 Скалярное произведение векторов, проекция одного вектора на другой. Понятие линейного пространства и подпространства, критерии подпространства
  10. Билет 8. Векторное произведение, его геометрический смысл, выражение через координаты. Базис и размерность линейного пространства.
  11. Билет10 Различные уравнения плоскости, угол между плоскостями. Вид матрицы линейного оператора в базисе из собственных векторов.
  12. Векторное и смешанное произведение векторов. Свойства и геометрический смысл. Вычисление через координаты векторов.

Положение координатных осей можно задать с помощью единичных векторов , , , направленных соответственно по осям . Векторы , , называются основными или базисными ортами.

Пусть задан в пространстве вектор своими проекциями на координатные оси: , , .

Тогда имеет место формула:

(3)

Формула (3) называется разложением вектора по основным ортам.

Проекции , , вектора на координатные оси называются его координатами. Зная координаты вектора, можно записать разложение вектора по основным ортам и, наоборот, зная разложение вектора по основным ортам, определяют координаты вектора (коэффициенты при ортах – есть координаты вектора).

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)