|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Базис. Координаты вектора в базисеРассмотрим понятие базиса для произвольного линейного пространства L. Определение 4.21. Базисом линейного пространства L называется любая упорядоченная система линейно независимых векторов этого пространства таких, что каждый вектор представим в виде линейной комбинации этих векторов, т.е. , (16) Выражение (16) называется разложением вектора по базису , а коэффициенты в разложении { }() называются координатами вектора относительно данного базиса. Замечание. Каждому вектору ставится в соответствие единственный набор чисел { }() и наоборот, т.е. координаты вектора относительно базиса определяются однозначно. Таким образом, вектор можно задавать его координатами: . Такой вектор называется n - мерным арифметическим вектором или просто n - мерным вектором. Название «n - мерный вектор» связано с тем, что при n =2 или n =3 получаем координаты вектора на плоскости или в пространстве. Замечание. Коэффициенты одного и того же вектора в разложениях по разным базисам различны. Замечание. Координаты вектора можно также записывать в виде строчной или столбцевой матриц. Поэтому очень часто под вектором понимают соответствующую сточную (столбцевую) матрицу и наоборот: при необходимости любую матрицу рассматривают как вектор с соответствующими координатами. Строчные(столбцевые) матрицы частоназывают вектор-строкой (вектор-столбцом). В пространстве L существует много различных базисов, однако все они состоят из одного и того же числа векторов. Количество векторов в базисе называется размерностью линейного пространства. Размерность линейного пространства L будем обозначать dim L (от французского слова dimension – размерность). Пространство L размерности n будем называть n - мерным и писать Если пространство состоит из одного нулевого элемента, то его размерность будем считать равной нулю. Замечание. Из определения базиса 21 и теорем 1, 2 и 4 следует: 1) базисом векторов на прямой является любой ненулевой вектор , лежащий на этой прямой; 2) базисом векторов на плоскости является любая упорядоченная пара неколлинеарных векторов , принадлежащих этой плоскости; 3) базисом векторов в трехмерном пространстве является любая упорядоченная тройка некомпланарных векторов этого пространства. Такие базисы называют аффинными базисами векторов прямой, плоскости и трехмерного пространства соответственно. Множество векторов прямой образует одномерное, плоскости — двумерное, обычного пространства — трехмерное векторные пространства. Выше мы обозначили их через соответственно. Здесь нижний индекс означает размерность пространства. Пространства, в которых нельзя указать базис, состоящий из конечного числа векторов, называются бесконечномерными. Примером бесконечномерного пространства может служить множество С [ a, b ] непрерывных на отрезке [ a, b ] функций f(t), для которых операции сложения и умножения на число определены естественным образом. В дальнейшем мы будем рассматривать конечномерные векторные пространства. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |