АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Примеры. 5.2.1. Доказать, что векторы , и компланарны

Читайте также:
  1. Булевы функции. Способы задания. Примеры.
  2. Вопрос: Паблик рилейшнз в туризме. Примеры
  3. Евклидова пространства. Примеры евклидовых пространств.Простейшие свойства евклидовых пространств.
  4. Интегральные микросхемы регистров (примеры)
  5. Классификация потерь и их примеры
  6. Конструкции колес (примеры)
  7. Контрольные примеры
  8. Контрольные примеры и задачи
  9. Лазерные системы акустической разведки. Принцип работы. Назначение. Примеры
  10. Матрицы и их классификация. Действия с матрицами. Экономические примеры.
  11. Напишите кратко, в чем состоят основные функции языка (по учебнику: Мечковская Н. Б. Социальная лингвистика). Приведите примеры. Коммуникативная функция языка —
  12. Направленные микрофоны. Типы направленных микрофонов. Принцип работы. Основные характеристики. Назначение. Примеры направленных микрофонов.

5.2.1. Доказать, что векторы , и компланарны.

Решение. Вычислим смешанное произведение векторов по формуле (25)

Так как , то векторы и - компланарны.

5.2.2. Вычислить объём тетраэдра, вершины которого находятся в точках , , ,

Решение. Введём векторы , , , .

Найдём

Следовательно, (куб.ед.)

5.2.3. Вычислить , зная, что , , . Векторы и образуют правую тройку и взаимно перпендикулярны.

Решение. , где - угол между вектором и вектором . Векторы и коллинеарны, поэтому . Так как по условию векторы , и образуют правую тройку, то . Следовательно, . Найдём . Тогда .

 

Вопросы для самопроверки

Что называется смешанным произведением векторов? Как оно обозначается?

Каковы свойства смешанного произведения?

Как считается смешанное произведение векторов, заданных своими координатами?

Каково условие компланарности векторов?

Каков геометрический смысл смешанного произведения?

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)