АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доказательство. Необходимость. Пусть система (4.1.1) совместна и пусть числа – одно из ее решений

Читайте также:
  1. Глава 4. Социальное доказательство.
  2. Доказательство.
  3. Доказательство.
  4. Доказательство.
  5. Доказательство.
  6. Доказательство.
  7. Доказательство.
  8. Доказательство.
  9. Доказательство.
  10. Доказательство.
  11. Доказательство.

Необходимость. Пусть система (4.1.1) совместна и пусть числа – одно из ее решений. Подставляя эти числа вместо неизвестных в систему (4.1.1), получим m тождеств, которые показывают, что последний столбец матрицы является линейной комбинацией всех остальных столбцов, взятых соответственно с коэффициентами . Всякий другой столбец матрицы входит и в матрицу А. Поэтому максимальное число линейно независимых столбцов матриц А и совпадает. Следовательно, .

Достаточность. Пусть дано, что . Отсюда следует, что максимальное число линейно независимых столбцов матриц А и совпадает и равно r. Для определенности предположим, что первые r столбцов матриц А и линейно независимы, а остальные (n-r) столбцов является их линейными комбинациями. Выражая последний столбец матрицы А как линейную комбинацию первых r столбцов, получим:

откуда следует, что числа являются решением системы (4.1.1), т.е. система (4.1.1) совместна. Теорема доказана.

На основании теоремы Кронекера-Капелли имеем:

1. Если , то система (4.1.1) несовместна;

2. Если , то система (4.1.1) совместна.

Пусть для определенности базисный минор порядка r расположен в верхнем левом углу матрицы А. Тогда первые r строк матрицы А линейно независимы, а остальные ее строки являются линейной комбинацией первых r строк. Но это означает, что первые r уравнений системы (4.1.1) линейно независимы, а остальные (m-r) ее уравнений являются их линейными комбинациями. Поэтому достаточно решить систему r уравнений; решения такой системы будут, очевидно, удовлетворять и остальным (m-r) уравнениям.

При этом возможны два случая:

1. . Тогда систему, состоящую из первых r уравнений системы (4.1.1)

можно решить, например, по правилу Крамера. В этом случае система имеет единственное решение, т.е. система совместна и определена;

2. . Рассмотрим первые r уравнений системы (4.1.1). Оставив в левых частях первые r неизвестных, перенесем остальные в правые части. Получим систему:

Очевидно, что полученная система и, следовательно, система (4.1.1) являются совместными и неопределенными.

Таким образом, если , то система (4.1.1) совместна (определенная или неопределенная), если , то система (4.1.1) несовместна.

Если в системе n линейных уравнений с n неизвестными определитель системы равен нулю, то . Тогда если , то система является совместной и неопределенной. Если , то система несовместна.

Теорема Кронекера-Капелли устанавливает необходимое и достаточное условие совместности системы (4.1.1), но не дает способа нахождения решения этой системы. Рассмотрим метод Жордана-Гаусса – метод решения системы m линейных уравнений с n неизвестными.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)