АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линейное преобразование переменных в квадратичной форме

Читайте также:
  1. XVIII Преобразование те карст в созерцанием
  2. А выходные характеристики системы являются зависимыми (эндогенными) переменными и в векторной форме имеют вид
  3. Административно-территориальные единицы субъектов РФ. Образование и преобразование административно-территориальных единиц.
  4. Аналого-цифровое и цифро-аналоговое преобразование
  5. Аудит проведения международных расчетов в форме документарного аккредитива
  6. Аудит расчетов по форме безналичных расчетов
  7. Бесформенное предчувствие
  8. Билет 13 Угол между 2 мя прямыми , условия параллельности и перпендикулярности. Преобразование линейного оператора при переходе к новому базису
  9. Билет 21 Квадратичные формы, преобразование матрицы квадратичной формы при переходе к новому базису.
  10. Билет 24 Приведение квадратичной формы к каноническому виду с помощью ортогональных преобразований.
  11. Билет 29Приведение квадратичной формы к каноническому виду с помощью ортогонального преобразования переменных.
  12. Билинейное Z – преобразование.

Пусть в квадратичной форме делается линейное преобразование переменных :

.

В результате данного преобразования будет получена квадратичная форма, зависящая от новых переменных :

.

Покажем, что квадратичная форма автоматически получается правильно записанной. Для этого достаточно убедиться в том, что матрица симметрична. Действительно,

.

Откуда следует симметричность матрицы .

Пример. Осуществить над квадратичной формой линейное преобразование, заданное матрицей

.

Решение. Переменные матрицей В преобразуются в переменные . Связь между переменными выражается матричным уравнением

,

откуда .

В квадратичную форму вместо переменных подставим их выражения через переменные . Получим квадратичную форму

Определение. Квадратичная форма имеет канонический вид, если матрица С диагональна.

Из данного определения следует, что квадратичная форма в каноническом виде содержит только квадраты переменных и имеет вид

.

Нормальным видом квадратичной формы называется сумма квадратов переменных с коэффициентами . Если , то положив

получим .

Теорема. Всякая квадратичная форма может быть приведена некоторым невырожденным линейным преобразованием к каноническому виду.

Доказательство. Обратимся к методу математической индукции по числу переменных. При n =1 квадратичная форма имеет канонический вид: . Допустим, что для квадратичной формы от числа переменных, меньше чем n, теорема доказана.

Пусть

и пусть хотя бы один из коэффициентов , например . сгруппируем все слагаемые, содержащие , и вынесем коэффициент c 11 за скобку. Получим

Выделим теперь в первой скобке квадрат линейной формы:

где – квадратичная форма от n -1 неизвестных . Осуществим следующее преобразование:

или

Данное преобразование задается матрицей

.

Так как , то преобразование является невырожденным. Форма зависит от n -1 переменных. В силу индуктивного предположения существует невырожденное линейное преобразование D такое, что

после которого квадратная форма преобразуется в квадратичную форму . Добавляя к преобразованию еще одну строчку, получим

Так как , то преобразование Y=DZ невырожденное. В результате получим

.

Если в квадратичной форме , то в этом случае осуществим линейное преобразование:

.

После данного преобразования член преобразуется следующим образом:

.

Коэффициент при отличен от нуля: . Теорема доказана.

Пример. Преобразовать квадратичную форму

к каноническому виду.

Решение. Матрица С квадратичной формы имеет вид

.

Сгруппируем все члены, содержащие переменные x 1 и «выделим полный квадрат»:

Осуществим линейное преобразование переменных:

Выразим неизвестные через :

,

полученные выражения подставим в квадратичную форму. Придем к форме

.

Осуществляя вспомогательное преобразование , получим:

.

Выделим полный квадрат в квадратичной форме:

Осуществим линейное преобразование переменных:

и выразим переменные через :

.

После указанных преобразований получим квадратичную форму, зависящую от переменных :

.

Полагая и выражая переменные через получим

.

Канонический вид квадратичной формы содержит три переменных, а не четыре. Это связано с рангом квадратичной формы.

Определение. Рангом квадратичной формы называется ранг матрицы С. Теорема о приведении квадратичной формы к каноническому виду означает, что для данной симметрической матрицы С существует такая невырожденная матрица В, что , где D – диагональная матрица.

Из доказательства теоремы следует, что приведение квадратичной формы к каноническому виду может осуществляться бесконечным множеством способов – например, можно сделать произвольную линейную подстановку, а затем приступить к «выделению квадратов». Поэтому матрицы В и D определяются неоднозначно. Однако число ненулевых элементов матрицы D однозначно определено и равно рангу матрицы С.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)