АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Выпуклые множества

Читайте также:
  1. Бинарные соответствия между множествами.
  2. Вопрос. Множества и операции над ними
  3. Выпуклые множества, свойства выпуклых множеств
  4. Если для множества Е выполняются все вышеперечисленные условия, то множество Е называют линейным пространством.
  5. Задача о доставке (покрытии множества)
  6. Использование множества таблиц в одном запросе. Связывание таблиц.оператора SELECT, в предложении FROM допускается указание нескольких таблиц.
  7. Каким термином характеризуется философское учение, признающее существование множества субстанций?
  8. Любая система может быть рассмотрена как множество, но не любое множество может быть рассмотрено как система. Важно понимать, что понятие множества отличается от понятия системы
  9. Множества
  10. Множества и его элементы. Подмножества.
  11. МНОЖЕСТВА СИМВОЛОВ

 

Рассмотрим совместную систему линейных уравнений

(5.8.1)

у которой ранг r матрицы меньше n, и пусть k=n-r.

Определение. Множество точек из Еn, координаты которых удовлетворяют системе уравнений (5.8.1), называется k -мерной плоскостью. Одномерные плоскости называются прямыми, а (n-1)-мерные плоскости – гиперплоскостями.

Очевидно, что каждую гиперплоскость можно задать всего одним линейным уравнением:

.

В трехмерном пространстве Е3 гиперплоскости – это обычные плоскости, а в Е2 – это прямые.

Определение. Отрезком в Еn, соединяющим точки , называется множество таких точек , что

Точки называются концами отрезка .

Определение. Множество Х пространства Еn называется выпуклым, если вместе с любыми двумя точками ему принадлежит и соединяющих их отрезок .

Выпуклость множества Х означает, что из следует для всех . Например, в Е2 выпуклый отрезок, полупрямая, круг, треугольник, полуплоскость и вся плоскость.

Определение. Множество Х точек пространства Еn называется ограниченным, если координаты всех его точек в некотором базисе ограничены.

Пусть в пространстве задана гиперплоскость . Все точки из Еn разбиваются этой гиперплоскостью на два полупространства: Х1 – множество точек, для которых и – множество точек, для которых .

Теорема. Каждое полупространство пространства Еn является выпуклым множеством.

Доказательство. Пусть точки и из Еn принадлежат, например, полупространству Х1. Тогда

Если – произвольная точка отрезка , то

Для этой точки имеем:

т.е. произвольная точка отрезка принадлежит Х1. Теорема доказана.

Теорема. Пересечение любого числа выпуклых множеств есть множество выпуклое.

Доказательство. Пусть – выпуклые множества в Еn. Если состоит из одной точки, то оно выпукло. Если более чем из одной, то пусть – любые две из них. Тогда и, так как все множества выпуклы, то и, следовательно, , что и требовалось доказать.

Из данной теоремы следует, что гиперплоскость как пересечение выпуклых множеств Х1 и Х2, является выпуклым множеством. Каждая k -мерная плоскость в Еn также выпукла.

Пусть в Еn даны m полупространств, определяемых неравенствами

. (5.8.2)

Пересечение этих полупространств, называемое выпуклой многогранной областью, определяет множество решений системы линейных неравенств (5.8.2). Если это пересечение ограничено, оно называется выпуклым многогранником в Еn.

Определение. Последовательность точек в Еn сходится к точке при , если

.

Множество называется окрестностью точки .

Определение. Множество называется замкнутым, если оно содержит все свои предельные точки.

Определение. Точка из Еn называется внутренней точкой множества Х, если существует такая ее -окрестность, все точки которой принадлежат множеству Х.

Определение. Точка из Еn называется граничной точкой множества Х, если любая ее -окрестность содержит как точки, принадлежащие множеству Х, так и точки, ему не принадлежащие. Множество, состоящее из всех граничных точек множества Х, называется границей множества Х.

Определение. Точка называется крайней точкой (вершиной), если в Х не существует точек , что .

Для круга любая точка ограничивающей его окружности является крайней. Крайними точками являются все вершины выпуклого многогранника.

Определение. Точка называется выпуклой комбинацией точек , если существуют такие числа , что при условии .

Например, любая внутренняя точка круга является выпуклой комбинацией концов хорды, проходящей через эту точку.

Теорема (о представлении). Любая точка выпуклого замкнутого, ограниченного множества может быть представлена в виде выпуклой комбинации конечного числа крайних точек этого множества.

Пример. Используя теорему о представлении, выразить точку в виде выпуклой комбинации крайних точек множества , заданного системой неравенств

 
 

Решение. Очевидно, что множество Х выпукло. Множество Х (рис.5.1)

представляет собой треугольник с вершинами . На основании теоремы о представлении точку можно представить в виде следующей выпуклой комбинации:

.

В координатной форме получим два уравнения:

Добавляя к данной системе условие , получим систему трех линейных уравнений с тремя неизвестными. Решая систему методом Жордана-Гаусса, получаем

,

откуда

Все эти коэффициенты удовлетворяют условию неотрицательности: . Поэтому искомое представление имеет вид .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)