АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Система линейных уравнений

Читайте также:
  1. A) прогрессивная система налогообложения.
  2. C) Систематическими
  3. ERP и CRM система OpenERP
  4. I Понятие об информационных системах
  5. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  6. I. Составление дифференциальных уравнений и определение передаточных функций
  7. I. Суспільство як соціальна система.
  8. I.2. Система римского права
  9. I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
  10. II. Органы и системы эмбриона: нервная система и сердце
  11. III. Органы и системы эмбриона: пищеварительная система
  12. MathCad: способы решения системы уравнений.

Системой m линейных уравнений с n неизвестными называется система m алгебраических уравнений первой степени вида

(4.1.1)

где – неизвестные, подлежащие определению;

– числа, называемые коэффициентами при неизвестных;

– числа, называемые свободными членами.

Решением системы уравнений (4.1.1) называется совокупность n чисел таких, что если в каждое уравнение системы вместо неизвестных подставить эти числа ( вместо , вместо вместо ), то все уравнения обратятся в тождества.

Если система линейных уравнений (4.1.1) имеет хотя бы одно решение, то она называется совместной. В противном случае система называется несовместной.

Совместная система, имеющая единственное решение, называется определенной, а система, имеющая более одного решения – неопределенной.

Две системы линейных уравнений называются эквивалентными, если любое решение каждой из них является одновременно решением и другой системы.

Две произвольные несовместные системы считаются эквивалентными.

Системе линейных уравнений (4.1.1) поставим в соответствие матрицу и расширенную матрицу

,

полученную присоединением к матрице А столбца свободных членов.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)