|
|||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линейная зависимость и независимость строк матрицы
Введем понятие линейной зависимости и независимости строк матрицы. Пусть дана некоторая матрица А =
где или Из (3.3.1) вытекает, что
где Определение. Строки
Если равенство (3.3.3) справедливо тогда и только тогда, когда Легко видеть и обратное: если строки линейно зависимы, то найдется строка, которая будет линейной комбинацией остальных строк. Пусть, например, в (3.3.3) Определение. Пусть в матрице А выделен некоторый минор r -го порядка Теперь докажем важную лемму. Лемма об окаймляющих минорах. Если минор Доказательство. Не нарушая общности рассуждений, будем считать, что отличный от нуля минор r -го порядка
Для первых k строк матрицы А утверждение леммы очевидно: достаточно в линейную комбинацию включить эту же строку с коэффициентом, равным единице, а остальные – с коэффициентами, равными нулю. Докажем теперь, что и остальные строки матрицы А линейно выражаются через первые k строк. Для этого построим минор (r +1)-го порядка
Полученный минор равен нулю при всех k и l. Если Разложим минор
где
где Полагая
Выражение (3.3.6) означает, что k -я строка матрицы А линейно выражается через первые r строк. Так как при транспонировании матрицы значения ее миноров не изменяются (ввиду свойства определителей), то все доказанное справедливо и для столбцов. Теорема доказана. Следствие I. Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов). Действительно, базисный минор матрицы отличен от нуля, а все окаймляющие его миноры равны нулю. Следствие II. Определитель n -го порядка тогда и только тогда равен нулю, когда он содержит линейно зависимые строки (столбцы). Достаточность линейной зависимости строк (столбцов) для равенства определителя нулю доказана ранее как свойство определителей. Докажем необходимость. Пусть задана квадратная матрица n -го порядка, единственный минор которой Докажем еще одну теорему о ранге матрицы. Теорема. Максимальное число линейно независимых строк матрицы равно максимальному числу ее линейно независимых столбцов и равно рангу этой матрицы. Доказательство. Пусть ранг матрицы А = В заключение изложим еще один метод нахождения ранга матрицы. Ранг матрицы можно определить, если найти минор максимального порядка, отличный от нуля. На первый взгляд, это требует вычисления хотя и конечного, но быть может, очень большого числа миноров этой матрицы. Следующая теорема позволяет, однако, внести в этот значительные упрощения. Теорема. Если минор Доказательство. Достаточно показать, что любая подсистема строк матрицы Предположим противное. Пусть строки
Рассмотрим матрицу К из коэффициентов линейных выражений (3.3.7):
Строки этой матрицы обозначим через
Перейдем к равенству компонент
Теперь рассмотрим следующую линейную комбинацию:
Используя (3.3.7) и (3.3.8), получаем
что противоречит линейной независимости строк Следовательно, наше предположение неверно и, значит, любые S>r строк в условиях теоремы линейно зависимы. Теорема доказана. Рассмотрим правило вычисления ранга матрицы – метод окаймляющих миноров, основанный на данной теореме. При вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков. Если уже найден минор r-го порядка Пример. Вычислить методом окаймляющих миноров ранг матрицы
Решение. Минор второго порядка, стоящий в левом верхнем углу матрицы А, отличен от нуля:
Однако все окаймляющие его миноры третьего порядка равны нулю:
Следовательно, ранг матрицы А равен двум: Первая и вторая строки, первый и второй столбцы в данной матрице являются базисными. Остальные строки и столбцы являются их линейными комбинациями. В самом деле, для строк справедливы следующие равенства: В заключение отметим справедливость следующих свойств: 1) ранг произведения матриц не больше ранга каждого из сомножителей; 2) ранг произведения произвольной матрицы А справа или слева на невырожденную квадратную матрицу Q равен рангу матрицы А. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |