АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Собственный вектор и собственное число линейного оператора

Читайте также:
  1. B) Отрицательное число.
  2. I. Случайные величины с дискретным законом распределения (т.е. у случайных величин конечное или счетное число значений)
  3. II. Операции над векторами, заданными их разложениями по ортам (заданными координатами)
  4. II. Свойства векторного произведения
  5. II. Умножение матрицы на число
  6. III. Векторное произведение векторов, заданных координатами
  7. III. ОСНОВНЫЕ АКСИОМЫ ЧИСЛА (ЧИСЛО КАК СУЖДЕНИЕ)
  8. III. Умножение вектора на число
  9. IV. ФУНКЦИЯ И СОСЕДНИЕ КАТЕГОРИИ (ЧИСЛО КАК СУЖДЕНИЕ, УМОЗАКЛЮЧЕНИЕ, ДОКАЗАТЕЛbСТВО И ВЫРАЖЕНИЕ)
  10. MathCad: понятие массива, создание векторов и матриц.
  11. N – число измерений.
  12. N- число ступеней изменения концентраций

Пусть в пространстве задан линейный оператор .

Определение. Ненулевой вектор , удовлетворяющий соотношению , называется собственным вектором, а соответствующее число – собственным значением оператора .

Из данного определения следует, что образом собственного вектора является коллинеарный ему вектор .

Отметим некоторые свойства собственных векторов оператора .

1. Каждому собственному вектору соответствует единственное собственное число. Предположим обратное: пусть собственному вектору оператора соответствуют два собственных числа . Это значит, что

,

.

Но отсюда следует, что

Так как по условию – ненулевой вектор, то .

2. Если и – собственные векторы оператора с одним и тем же собственным числом , то их сумма также является собственным вектором оператора с собственным числом . Действительно, так как и , то

.

3. Если – собственный вектор оператора с собственным числом , то любой вектор , коллинеарный вектору , также является собственным вектором оператора с тем же самым собственным числом .

Действительно,

.

Таким образом, каждому собственному числу соответствует бесчисленное множество коллинеарных собственных векторов. Из свойств 2 и 3 следует, что множество собственных векторов оператора , соответствующих одному и тому же собственному числу, образует пространство, которое является подпространством пространства .

Докажем теорему о существовании собственного вектора.

Теорема. В комплексном линейном пространстве каждый линейный оператор имеет, по крайней мере, один собственный вектор.

Доказательство. Пусть – линейный оператор, заданный в пространстве , а – собственный вектор этого оператора с собственным числом , т.е. . Выберем произвольный базис и обозначим координаты вектора в этом базисе через . Тогда, если – матрица оператора в базисе , то, записывая соотношение в матричной форме, получим

где . (6.3.1)

В координатной форме матричное уравнение (6.3.1) имеет вид

(6.3.2)

Для отыскания собственного вектора необходимо найти ненулевые решения системы (6.3.2), которые существуют тогда и только тогда, когда определитель системы равен нулю, т.е. когда . Отсюда следует, что собственное число линейного оператора является его характеристическим числом, которое всегда существует. Подставляя это число в систему (6.3.2), найдет ненулевое решение этой системы, которое определяет искомый собственный вектор. Теорема доказана.

Из данной теоремы следует, что нахождение собственного числа линейного оператора и соответствующего ему собственного вектора сводится к решению характеристического уравнения . Пусть – различные корни характеристического уравнения. Подставив какой-нибудь корень в систему (6.3.2), найдем все ее линейно независимые решения, которые и определяют собственные векторы, соответствующие собственному числу . Если ранг матрицы равен r и r<n, то существует k=n-r линейно независимых собственных векторов, отвечающих корню.

Пример. Найти собственные векторы линейного оператора , заданного матрицей

.

Решение. Составим характеристическое уравнение

,

или откуда .

Подставляем корни в систему (6.3.1). Найдем собственные векторы оператора .

При имеем

.

Получим однородную систему трех линейных уравнений, из которых только одно (любое) является линейно независимым. Общее решение системы имеет вид . Найдем два линейно независимых решения:

.

Тогда собственные векторы, соответствующие собственным значениям , имеют вид

,

где с – произвольное действительное число, отличное от нуля.

При имеем

.

Общее решение данной системы имеет вид

Собственный вектор, соответствующий собственному значению , равен

.

Теорема. Пусть собственные значения оператора попарно различны. Тогда отвечающие им собственные векторы линейно независимы.

Доказательство. Используем метод индукции по числу переменных. Так как – ненулевой вектор, то при p =1 утверждение теоремы справедливо.

Пусть утверждение теоремы справедливо для m<p векторов . Присоединим к этим векторам вектор и допустим, что имеет место равенство

(6.3.3)

Используя свойство линейного оператора, получим

(6.3.4)

Так как , -собственные векторы, то и поэтому равенство (6.3.4) можно переписать следующим образом:

(6.3.5)

Умножим (6.3.3) на и вычтем из (6.3.5), получим

(6.3.6)

По условию все , различны, поэтому . Система векторов – линейно независимая. Поэтому из (6.3.6) следует, что . Тогда из (6.3.3) и из условия, что – собственный вектор (), получаем . Это означает, что – система линейно независимых векторов. Индукция проведена. Теорема доказана.

Следствие: если все собственные значения попарно различны, то отвечающие им собственные векторы образуют базис пространства .

Теорема. Если в качестве базиса пространства принять n линейно независимых собственных векторов, то оператору в этом базисе соответствует диагональная матрица

.

Доказательство. Рассмотрим произвольный вектор и базис, составленный из собственных векторов этого пространства. Тогда , где – координаты вектора в базисе .

Применяя к вектору оператор , получим или .

Так как , – собственный вектор, то .

Тогда

(6.3.7)

Из (6.3.7) имеем

, , ………… . (6.3.8)

Равенства (6.3.8) означают, что матрица линейного оператора в базисе имеет вид

.

Теорема доказана.

Определение. Линейный оператор в пространстве Rn называется оператором простой структуры, если он имеет n линейно независимых собственных векторов.

Очевидно, что операторы простой структуры, и только они, имеют диагональные матрицы в некотором базисе. Этот базис может быть составлен лишь из собственных векторов оператора . Действие любого оператора простой структуры всегда сводится к «растяжению» координат вектора в данном базисе.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.)