АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Приклад 43

Читайте также:
  1. A.Прикладной уровень
  2. II. ПРОГРАММА ТЕОРЕТИКО-ПРИКЛАДНОГО СОЦИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ
  3. S-M-N-теорема, приклади її використання
  4. АВТОМАТ КАЛАШНИКОВА МОДЕРНИЗИРОВАННЫЙ (АКМ), калибр 7,62-мм со складным металлическим прикладом
  5. Белорусское искусство XVIII века. График Гершка Лейбович, резчик Ян Шмитт, художники Хеские. Слуцкие пояса и другие произведения декоративно-прикладного искусства данной эпохи.
  6. Библиографический список книг В. А. Абчука по экономике, менеджменту, маркетингу и прикладной математике
  7. Билет 34. Прикладная политология. Методы политических исследований.
  8. В якості прикладу розглянемо задачу.
  9. Вегетаційні досліди на прикладі водних рослин
  10. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III ( всі № №, що закінчуються на цифру 1, наприклад: № 1, № 11, № 21 . . . №1141 ).
  11. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 0, наприклад: № 10, № 20, № 30 . . . №1140).
  12. Випишіть та запам'ятайте латинські юридичні терміни, формули, сентенції, наведені в Додатку III (всі № №, що закінчуються на цифру 3, наприклад: № 3, № 13, № 23 . . . №1143)

Обчислити площу фігур, обмежених лініями:

а) ; б) .

 

Розв’язок.

а)

Фігура обмежена віссю () і параболою на відрізку .

Побудуємо параболу. Знайдемо точки перетину параболи з віссю . Для цього дорівняємо :

; ; ; .

Знайдемо координати вершини параболи:

,

.

Парабола має вершину в точці з координатами і гілки її спрямовано вгору.

Фігура, обмежена заданими лініями зображена на рис. 15.

Площа шуканої фігури дорівнює сумі площ двох криволінійних трапецій:

.

Знайдемо площу:

(од.2)

(од.2)

Тоді площа заданої плоскої фігури дорівнює:

(од.2).

 

б)

Фігура обмежена параболою і прямою .

Побудуємо дані параболу і пряму (рис. 16).

Знайдемо межі інтегрування, тобто точки перетину прямої і параболи. Для цього розв’яжемо систему, складену з рівнянь цих ліній:

; ;

;

;

;

.

Отже, парабола і пряма перетинаються в точках з абсцисами і .

 

Площу фігури визначаємо за формулою:

,

де лінією є пряма (обмежує фігуру зверху), а лінією є парабола (обмежує фігуру знизу).

(од.2).

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)