|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод часткових значеньОскільки многочлени тотожно рівні, то, підставляючи замість Після знаходження значень невідомих коефіцієнтів, даний дріб записується у вигляді суми найпростіших дробів у підінтегральний вираз і здійснюється раніше розглянуте інтегрування по кожному найпростішому дробу. Схема інтегрування раціональних дробів: 1. Якщо підінтегральний дріб неправильний, то необхідно представити його у вигляді суми многочлена і правильного раціонального дробу (тобто розділити многочлен чисельника на многочлен знаменника з остачею). Якщо підінтегральний дріб правильний відразу переходимо до другого пункту схеми. 2. Розкласти знаменник правильного раціонального дробу на множники, якщо це можливо. 3. Розкласти правильний раціональний дріб на суму найпростіших раціональних дробів, використовуючи метод невизначених коефіцієнтів. 4. Проінтегрувати отриману суму многочлена і найпростіших дробів.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (2.244 сек.) |