АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод часткових значень

Читайте также:
  1. A. Выявление антигенов вируса в мокроте методом ИФА.
  2. D. Генно-инженерным методом
  3. F. Метод, основанный на использовании свойства монотонности показательной функции .
  4. FAST (Методика быстрого анализа решения)
  5. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  6. I. 2.1. Графический метод решения задачи ЛП
  7. I. 3.2. Двойственный симплекс-метод.
  8. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  9. I. Иммунология. Определение, задачи, методы. История развитии иммунологии.
  10. I. Метод рассмотрения остатков от деления.
  11. I. Методические основы
  12. I. Методические основы оценки эффективности инвестиционных проектов

Оскільки многочлени тотожно рівні, то, підставляючи замість у ліву і праву частини будь-яке число, одержимо вірну рівність, лінійну щодо невідомих коефіцієнтів. Підставляючи стільки значень , скільки є невідомих коефіцієнтів, одержимо систему лінійних рівнянь. Замість у ліву і праву частини можна підставляти будь-які числа, однак більш зручно підставляти корені знаменників дробів.

Після знаходження значень невідомих коефіцієнтів, даний дріб записується у вигляді суми найпростіших дробів у підінтегральний вираз і здійснюється раніше розглянуте інтегрування по кожному найпростішому дробу.

Схема інтегрування раціональних дробів:

1. Якщо підінтегральний дріб неправильний, то необхідно представити його у вигляді суми многочлена і правильного раціонального дробу (тобто розділити многочлен чисельника на многочлен знаменника з остачею). Якщо підінтегральний дріб правильний відразу переходимо до другого пункту схеми.

2. Розкласти знаменник правильного раціонального дробу на множники, якщо це можливо.

3. Розкласти правильний раціональний дріб на суму найпростіших раціональних дробів, використовуючи метод невизначених коефіцієнтів.

4. Проінтегрувати отриману суму многочлена і найпростіших дробів.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)