АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Опуклість графіка функції. Точки перегину

Читайте также:
  1. II Точки перегиба
  2. III. Соціальна політика, її сутність і функції.
  3. INBASE (Б. Инвентарные карточки)
  4. INVMBP (Б. Карточки МБП)
  5. LiCl- гигрометр точки росы
  6. MBPAMORT (Б. Карточки МБП - История начисления амортизации на МБП)
  7. А. Механизмы творчества с точки зрения З. Фрейда и его последователей
  8. Алгоритм метода средней точки.
  9. Анализ точки безубыточности и динамика ее изменения, а также изменения ее составляющих за анализируемый период представлены в таблице №19.
  10. Анализ факторов изменения точки безубыточности и зоны безопасности предприятия
  11. АНТРОПОМЕТРИЧЕСКИЕ ТОЧКИ ГОЛОВЫ ЧЕЛОВЕКА
  12. Антропометрические точки на голове

Графік функції називається опуклим на інтервалі , якщо він розташований вище будь-якої своєї дотичної на цьому інтервалі (рис. 7а).

Графік функції називається вгнутим на інтервалі , якщо він розташований вище будь-якої своєї дотичної на цьому інтервалі (рис. 7б).

Опуклість і вгнутість графіка функції пов'язана зі знаком другої похідної функції. Знаходження проміжків опуклості і вгнутості спирається на наступну теорему.

Теорема: Якщо у всіх точках інтервалу друга похідна функції від’ємна, тобто , то графік функції на цьому інтервалі опуклий, якщо ж , то графік функції вгнутий.

Точка графіка функції, що відокремлює опуклу частину графіка від вгнутої, називається точкою перегину.

Для знаходження точок перегину графіка функції використовують необхідну і достатню умови існування точок перегину.

 

Необхідна умова існування точки перегину.

Якщо – абсциса точки перегину графіка функції , то друга похідна в цій точці або дорівнює нулю, або не існує, тобто або не існує.

Точки, у яких друга похідна дорівнює нулю або не існує (зокрема, точки розриву функції), називаються критичними точками другого роду.

Зауваження: Зворотне твердження не завжди є вірним, тобто якщо або не існує, то точка з абсцисою може і не бути точкою перегину.

 

Достатня умова існування точки перегину.

Якщо друга похідна при переході через критичну точку другого роду змінює знак, то точка з абсцисою є точкою перегину графіка функції.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)