АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Похідна складної функції

Читайте также:
  1. III. Соціальна політика, її сутність і функції.
  2. АБСТРАКТНІ КЛАСИ І ЧИСТІ ВІРТУАЛЬНІ ФУНКЦІЇ_________________________________________
  3. Автоматизоване робоче місце бухгалтера (АРМБ): призначення, функції та його рівні.
  4. Автоматизоване робоче місце бухгалтера (АРМБ): призначення, функції та його рівні.
  5. Алгоритм дослідження функції на парність та непарність
  6. Алгоритм знаходження функції, оберненої до даної.
  7. Асимптоти графіка функції
  8. Асимптоти графіка функції
  9. Асимптоти функції.
  10. Банківська система. Банки, їх види та функції
  11. Банківська система. Банки, їх види та функції
  12. Банківська система: сутність, принципи побудови та функції. особливості побудови банківської системи в Україн

Нехай і . Тоді є складною функцією із проміжним аргументом і основним аргументом .

Наприклад та , тоді – складна функція.

Похідна складної функції визначається за формулою:

.

Функція диференціюється по , а диференціюється по .

Ця формула поширюється на будь-який ланцюжок з будь-якою скінченною кількістю диференційовних функцій.

Зауваження: На практиці при диференціюванні складної функції корисно виділяти «зовнішню» функцію і «внутрішню» функцію . Диференціювання починається завжди із зовнішньої функції, а внутрішня функція, як би складно вона не виглядала, вважається простим аргументом. Похідна внутрішньої функції знаходиться за звичайними правилами.

Таким чином, з огляду на правило знаходження похідної складної функції, таблицю основних елементарних функцій можна записати в розширеному вигляді.

Зведена таблиця формул диференціювання

 

1. , (); 5. ;

2. ; 6. ;

2*. ; 7.

2**. ; 8.

3. ; 9. ;

3*. ; 10. ;

4. ; 11. ;

4*. ; 12. .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)