АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Критерий Мизеса-Смирнова

Читайте также:
  1. VI. Проверка статистических гипотез, критерий Стьюдента
  2. VII. Проверка статистических гипотез, критерий Хи-квадрат
  3. Базовый критерий компоновки
  4. Вопрос 4. Какой критерий анализа хозяйственной деятельности предприятия является генеральным в условиях рыночной экономики?
  5. Главный критерий – эффективность деятельности
  6. Ещё один аспект проявления принципа «практика — критерий истины»: «по вере вашей да будет вам»
  7. Интегральный критерий качества.
  8. Комплексный (лекальный) критерий
  9. Критерий Байеса-Лапласа.
  10. Критерий В.М. Попова
  11. Критерий Вилкоксона
  12. Критерий Гурвица

Критерий Мизеса-Смирнова в отличие от критерия Колмогорова, который основывается на максимуме абсолютной величины разности между эмпирической и теоретической функциями распределения, использует статистику в виде суммы взвешенных через весовую функцию квадратов разностей между эмпирической и теоретической функциями по всем наблюдаемым значениям случайной величины

,

где F(x) – теоретическая функция распределения;

Fэ(x) – эмпирическая функция распределения;

g(F(x)) – весовая функция.

Обычно используют весовые функции двух видов: g(F(x))=1, при которой все значения функции распределения обладают одинаковым весом, и

, при которой увеличивается вес наблюдений на концах распределения.

Ниже рассматривается критерий при весовой функции второго вида.

После выполнения интегрирования выражение для расчета статистики критерия имеет вид ,

где xi – результаты наблюдений, отсортированные по величине (x i £ x i +1).

Полученное значение статистики ω2 сравнивается с табличным значением ω2g. Значение g принимается на уровне 0.1– 0.2. Табличное значение критерия при g=0.1 составляет ω2g =1.94 и при g=0.2 – ω2g =1.42. Если рассчитанное значение статистики больше табличного, то гипотеза о согласованности отвергается, и если нет – то принимается.

Компьютерная программа для исследования распределения случайных величин приведена в приложении 2. Состоит из головной программы и модулей для исследования распределения непрерывных и дискретных величин.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)