АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Интервальная оценка параметров и определение интервалов распределения случайных величин

Читайте также:
  1. I. Определение основной и дополнительной зарплаты работников ведется с учетом рабочих, предусмотренных технологической картой.
  2. I. Случайные величины с дискретным законом распределения (т.е. у случайных величин конечное или счетное число значений)
  3. III. Определение оптимального уровня денежных средств.
  4. IV. Относительные величины, динамические ряды
  5. V. Вариационные ряды, средние величины, вариабельность признака
  6. V. Для дискретної випадкової величини Х, заданої рядом розподілу, знайти:
  7. XIV. 7. Вимірювання електрорушійних сил. Застосування методу вимірювання ЕРС для визначення різних фізико – хімічних величин
  8. А) Оценка уровня подготовленности нового работника.
  9. А. Средняя квадратическая погрешность функции измеренных величин.
  10. Абсолютные величины
  11. АБСОЛЮТНЫЕ И ОТНОСИТЕЛЬНЫЕ ВЕЛИЧИНЫ
  12. Аксиомы науки о безопасности жизнедеятельности. Определение и сущность.

Интервальная оценка параметра распределения случайной величины определяется тем, что с вероятностью g

abs(P – Pм) ≤d,

где P – точное (истинное) значение параметра;

Pм – оценка параметра по выборке;

d – точность (ошибка) оценивания параметра Р.

Наиболее часто принимают g от 0.8 до 0.99.

Доверительный интервал параметра [Pм–d, Pм+d] – это интервал, в который попадает значение параметра с вероятностью g. Например, на этой основе находится требуемый размер выборки случайной величины, который обеспечивает оценку математического ожидания при точности d с вероятностью g. Вид связи определяется законом распределения случайной величины.

Вероятность попадания случайной величины в заданный интервал [Х1, Х2] определяется приращением интегральной функции распределения на рассматриваемом интервале F(Х2)–F(Х1). Исходя из этого, при известной функции распределения можно найти ожидаемое гарантированное минимальное Хгн (x≥ Хгн) или максимальное значение Хгв (x≤ Хгв) случайной величины с заданной вероятностью g (рисунок 2.15). Первое из них является тем значением, больше которого случайная величина будет с вероятностью g, а второе – что случайная величина с вероятностью g меньше этого значения. Гарантированное минимальное значение Хгн с вероятностью g обеспечивается при F(x)= 1-g и максимальное Хгв при F(x)=g. Таким образом, значения Хгн и Хгв находятся по выражениям:

Хгн = F-1 (1-g);

Хгв = F-1 (g).

Пример. Случайная величина имеет экспоненциальное распределение с функцией .

Требуется найти значения Хгн и Хгв, для которых случайная величина х с вероятностью g=0.95 соответственно больше Хгн и меньше Хгв.

Исходя из того, что F-1 (α) = -1/l ln(1- α) (см.вывод ранее) и α = 1-g = 0.05 получаем

Хгн = -1/l ln(1- α) = -1/0.01 ln(1-0.05)=-100 (-.0513)=5.13.

Для Хгв α = g = 0.95 аналогично имеем

Хгв = -1/l ln(1- α) = -1/0.01 ln(1-0.95)=-100 (-2.996)=299.6.

Для нормального закона распределения значения Хгн и Хгв могут быть рассчитаны по формулам

Хгн = хм + s U1-g = хм - s Ug;

Хгв = xм + s Ug,

где xм – математическое ожидание случайной величины; s – среднеквадратическое отклонение случайной величины; Ug – односторонняя квантиль нормального закона распределения при вероятности g.

 

1.0

F(x)

0.80

 

0.60

g

0.40

 

0.20

1-g

xгн xгв x

 

Рисунок 2.15 – Графическая интрепретация определения Хгн и Хгв


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)