Свойства пределов функции
Пусть все функции, рассматриваемые ниже, определены на (а, в), кроме, быть может, фиксированной точки хо Î (а, в), тогда верны следующие свойства:
1. Если j (х) £ ¦ (х) £ y (х) и
А = = Þ = A.
2. Если ¦(х) = С (сonst) Þ ¦(x) = C.
3. Если cущ. Þ"с - const
4. Если существуют конечные пределы и , тогда:
а) ;
б) ;
в) = .
Все эти свойства доказываются одинаковым методом, основанным на соответствующих свойствах пределов последовательностей. Для доказательства этих свойств введем понятие бесконечно малых и бесконечно больших функций. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | Поиск по сайту:
|