АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Плоскость и прямая в пространстве

Читайте также:
  1. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  2. Действие уголовного закона в пространстве. Выдача лиц, совершивших преступление.
  3. Дз № 2. Прямая и плоскость
  4. Дз №3. Прямая на плоскости
  5. Касательная плоскость и нормаль к поверхности.
  6. Лекция от 14.12. Эволюция границ РФ. Эволюция территориального устройства. Современное состояние. Суть конфликтов на постсоветском пространстве.
  7. Логистика как самостоятельная область охватывает все виды деятельности по перемещению персонала и материальных ресурсов во времени и пространстве.
  8. Общее уравнение плоскости в пространстве.
  9. Партией, приведшей его к власти, хотя их прямая зависимость от
  10. Проектирование поверхности Земли на плоскость
  11. Проецирование пространственного изображения тела на плоскость

3.1. Уравнение поверхности в пространстве.

Положение точки в пространстве определяется тремя координатами.

Прямоугольная декартова система координат в пространстве представляет собой три перпендикулярные прямые Ox, Oy, Oz, снабженные масштабами и направлениями. Такие прямые называются координатными осями. Координатами точки M 0(x 0 ,y 0 ,z 0) называются координаты оснований перпендикуляров, опущенных из этой точки на координатные оси.

Уравнением поверхности (в выбранной системе координат) называется такое уравнение с тремя переменными F (x,y,z)=0, которому удовлетворяют координаты каждой точки, лежащей на этой поверхности, и только они.

3.2. Плоскость в пространстве.

Пусть плоскость проходит через точку M 0(x 0 ,y 0 ,z 0) перпендикулярно вектору =(А,B,C). Этими условиями определяется единственная плоскость в пространстве Oxyz. Вектор называется нормальным вектором плоскости. Для произвольной точки плоскости M (x,y,z) («текущей точки») векторы = (x-x 0, y-y 0, z-z 0) и должны быть перпендикулярны. Следовательно,

 

 

скалярное произведение этих векторов равно нулю, т.е. (, )=0. Полученное уравнение представим в координатной форме:

А (x- x 0) + В (y- y 0) + C (z- z 0) = 0. (18)

M
M0
Уравнение (18) представляет уравнение плоскости, перпендикулярной данному вектору = (А,B,C) и проходящей через данную точку M 0(x 0 ,y 0 ,z 0) (рис. 9).

y
x
 
Рис. 9
Пример 16. Составить уравнение плоскости, проходящей через точку M 0(-1,0,2) и перпендикулярной вектору = (2,5,-1).

Решение. Искомое уравнение имеет вид 2(x+ 1)+5(y- 0)-1(z- 2)=0. ■

Уравнение плоскости, записанное в виде

Аx + By + Cz + D = 0 (19)

(где D = - Аx 0 - By 0 - Cz 0), называется общим уравнением плоскости. Так, в предыдущем примере уравнению можно придать вид 2 x+ 5y-z+4 = 0.

Замечание. Всякое уравнение вида (19) (где хотя бы одно из чисел А, В, С не равно нулю) задает плоскость в пространстве и, наоборот, уравнение любой плоскости есть уравнение первой степени.

Отметим, что уравнение (, )=0 можно применить для вывода уравнения плоскости в пространстве, заданной тремя точками M 1(x 1 ,y 1 ,z 1), M 2(x 2 ,y 2 ,z 2), M 3(x 3 ,y 3 ,z 3), не лежащими на одной прямой. Так, взяв в качестве нормального вектора = - векторное произведение на , а в качестве M 0 точку M 1, получим

(, ) = 0,

что приводит к уравнению плоскости в форме определителя:

. (20)

В частности, если плоскость не проходит через начало координат и пересекает координатные оси в точках M 1 (a,0,0), M 2 (0, b,0), M 3 (0,0, c), то уравнение (20) приводится к виду

, (21)

называемому уравнением плоскости «в отрезках».

Рассмотрим далее частные случаи общего уравнения плоскости.

Если D= 0, то уравнение Аx+By+Cz= 0 определяет плоскость, проходящую через начало координат. Другие частные случаи определяются расположением нормального вектора = (А,B,C). Так, например, если А= 0, то уравнение By+Cz+D= 0 определяет плоскость, параллельную оси Ox (и проходящую через ось Ox, если D= 0); если А=B= 0, то уравнение Cz+D= 0 определяет плоскость, параллельную плоскости Oxy (в частности, z = 0 - уравнение самой плоскости Oxy).

Двугранный угол между двумя плоскостями, заданными своими общими уравнениями

А 1 x + B 1 y + C 1 z + D 1 = 0,

А 2 x + B 2 y + C 2 z + D 2 = 0, (22)

равен углу j между их нормальными векторами =(А 1 ,B 1 ,C 1) и = =(А 2 ,B 2 ,C 2) и определяется по формуле

cos j = = ; (23)

угол j лежит в пределах от 0 до p; другой двугранный угол, образованный двумя пересекающимися плоскостями, равен p - j.

Пример 17. Найти угол между плоскостями, заданными уравнениями 3 x-y- 2 z +250 = 0 и x -2 y+z -111 = 0.

Решение. Находим косинус угла между нормальными векторами =(3,-1,-2) и =(1,-2,1):

cos j = = ;

отсюда j=arccos . Другой двугранный угол равен 180°-71°=109°. ■

Две данные плоскости (22) перпендикулярны тогда и только тогда, когда их нормальные векторы =(А 1 ,B 1 ,C 1) и =(А 2 ,B 2 ,C 2) перпендикулярны между собой, откуда скалярное произведение (, )=0 или =0. Например, плоскости 3 x - y +2 z -31 = 0 и 5 x+ 3 y -6 z +1 = 0 перпендикулярны, так как 3×5+(-1) ×3+2×(-6)=0. Две данные плоскости параллельны тогда и только тогда, когда их нормальные векторы и коллинеарны, т.е. при выполнении условия .

Пример 18. Составить уравнение плоскости, проходящей через точку M 0(1,-1,0) и параллельной плоскости 2 x +3 y- 4 z -1 = 0.

Решение. Так как у параллельных плоскостей один и тот же нормальный вектор =(2,3,-4), то искомое уравнение имеет вид 2(x -1)+3(y+ 1)-4(z- 0)=0 или 2 x +3 y- 4 z +1 = 0. ■

 

3.3 [кроме ФЭУ] .Прямая линия в пространстве.

Линия в пространстве определяется совместным заданием двух уравнений F (x,y,z)=0, F (x,y,z)=0 как пересечение двух поверхностей, задаваемых этими уравнениями.

Так, прямая в пространстве может быть задана как линия пересечения двух плоскостей, т.е. как множество точек, удовлетворяющих системе

Если прямая в пространстве параллельна вектору = (а 1, а 2, а 3) (называемому направляющим вектором) и проходит через точку M 0(x 0 ,y 0 ,z 0), то её уравнения могут быть получены из условия коллинеарности векторов = (x-x 0, y-y 0, z-z 0) (где M (x,y,z) - произвольная точка прямой) и = (а 1, а 2, а 3):

. (24)

Уравнения (24) называются каноническими уравнениями прямой в пространстве.

Пример 19. Составить уравнения прямой, проходящей через точки M 0(1,-1,3) и M 1(0,3,5).

Решение. Воспользуемся уравнениями (24), взяв в качестве направляющего вектора = (0-1,3-(-1),5-3) или = (-1,4,2):

.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)