АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Например, уравнение

Читайте также:
  1. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  2. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  3. Вания. Одной из таких областей является, например, регулирова-
  4. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  5. Волна вероятности. Уравнение Шредингера
  6. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  7. Временное и стационарное уравнение Шредингера. Решения.
  8. Вязкость жидкости. Уравнение Ньютона. Закон Пуазейля
  9. Гармонические колебания и их характеристики. Дифференциальное уравнение свободных гармонических колебаний.
  10. Гипербола. Каноническое уравнение гиперболы и его свойства.
  11. Давление газа с точки зрения молекулярно-кинетической теории. Уравнение состояния идеального газа.
  12. Давление газа. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.

определяет сферу радиуса R с центром в начале координат.

При помощи поворотов и параллельного переноса осей координат всякое уравнение вида (25) может быть преобразовано к каноническому виду. Рассмотрим далее основные канонические уравнения, соответствующие типы поверхностей второго порядка и их наиболее важные свойства.

4.1.

c
Эллипсоид.

z
Эллипсоидом называется поверхность, которая в некоторой системе прямоугольных декартовых координат определяется уравнением

. (26)

y
 
Рис. 10
Уравнение (26) называется канони-ческим уравнением эллипсоида. Величины a, b, c - полуоси эллипсоида (рис. 10). Сечением эллипсоида любой плоскостью, параллельной координатным плоскостям, является эллипс (в частном случае окружность).

Координаты точек эллипсоида удовлетворяют неравенствам - a £ x £ a, - b £ y £ b, - c £ z £ c.

В частном случае, при a=b, эллипсоид является поверхностью вращения, получающейся при вращении вокруг оси Oz эллипса , лежащего в плоскости xOz. При a = b = с эллипсоид представляет собой сферу.

 

4. 2. Гиперболоиды.

Гиперболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями

, (27)

. (28)

       
 
   
 
z
z

 


c

           
     
 
 
 
b
 

x
y
y

x

 

 


Рис. 11 Рис. 12

 

Гиперболоид, определяемый уравнением (27), называется однополостным (рис. 11); гиперболоид, определяемый уравнением (28), называется двуполостным (рис. 12). Для обоих видов гиперболоидов сечения, параллельные оси Oz - гиперболы (для однополостного гиперболоида в сечении может быть пара пересекающихся прямых); сечения, параллельные плоскости xOy - эллипсы.

Величины a, b, с называются полуосями гиперболоида. В случае однополостного гиперболоида, заданного уравнением (27), только первые из них (a и b) показаны на рис. 11. В случае двуполостного гиперболоида, заданного уравнением (28), одна из них (именно с) показана на рис. 12.

Замечание. При a=b гиперболоиды являются поверхностями вращения.

4.3. Параболоиды.

Параболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями

, (29)

, (30)

где p и q - положительные числа, называемые параметрами параболоида. Параболоид, определяемый уравнением (29), называется эллиптическим (рис. 13). Сечения эллиптического параболоида, параллельные оси Oz - параболы; сечения, параллельные плоскости xOy - эллипсы. Параболоид, определяемый уравнением (30), называется гиперболическим (рис. 14). Сечения гиперболического параболоида, параллельные плоскостям yOz и xOz - параболы; сечения, параллельные плоскости xOy - гиперболы.

Замечание. В случае, когда p = q, эллиптический параболоид (29) является поверхностью вращения (вокруг оси Oz).

 

       
 
   
 

 

 


 

y
y
 

 

x

 

Рис. 13 Рис. 14

x
4.4. Конус.

z
Конус, определяемый уравнением , имеет вершину в начале координат (рис. 15).

b
y
x
Поверхность конуса состоит из прямолинейных образующих, проходящих через его вершину и через точки эллипса с полуосями a и b, плоскость которого перпендикулярна оси Oz и находится на расстоянии с от начала координат.

Рис. 15

4.5.Цилиндры.

Поверхности цилиндров состоят из прямых линий (образующих), параллельных оси Oz. Сечениями (перпендикулярными оси Oz) эллипти-ческого цилиндра (его уравнение ), гиперболического цилиндра (его уравнение ) и параболического цилиндра (его уравнение ) соответственно являются эллипсы, гиперболы и параболы.

Пример 20. Определить вид поверхности

,

используя метод сечения плоскостями.

Решение. Уравнение поверхности не содержит членов с произведением координат, следовательно плоскости симметрий параллельны координатным плоскостям.

Пересекая поверхность плоскостями параллельными плоскости xOy, получим:

.

Так как для любого с, полученная кривая является гиперболой с действительной осью, параллельной оси Ox.

Пересекая поверхность плоскостями аналогично получаем уравнение

гиперболы с действительной осью, параллельной оси Ox.

При пересечении данной поверхности плоскостями , параллельными координатной плоскости yOz, получаем:

.

Последнее уравнение при ,т.е. при и , есть уравнение эллипса.

Таким образом сечениями поверхности плоскостями являются эллипсы и гиперболы, действительные оси которых параллельны. Следовательно, исследуемая поверхность ­- двуполостный гиперболоид. Его уравнение можно преобразовать к каноническому виду:

.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)