АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пустое и универсальное множества

Читайте также:
  1. Бинарные соответствия между множествами.
  2. Использование множества таблиц в одном запросе. Связывание таблиц.оператора SELECT, в предложении FROM допускается указание нескольких таблиц.
  3. Каким термином характеризуется философское учение, признающее существование множества субстанций?
  4. Любая система может быть рассмотрена как множество, но не любое множество может быть рассмотрено как система. Важно понимать, что понятие множества отличается от понятия системы
  5. Множества
  6. МНОЖЕСТВА СИМВОЛОВ
  7. Операции над множествами
  8. Отношение эквивалентности. Разбиение множества на попарно непересекающиеся подмножества.
  9. Подмножества. Диаграммы Эйлера-Венна.
  10. Понятие множества, способы задания множеств
  11. При диагностировании решаются задачи точного определения состояния, в котором находится система, или установления множества состояний, в одном из которых она находится.

Определение 1.1. В теории множеств отдельно вводится множество, которое не содержит ни одного элемента. Такое множество называется пустым и обозначается символом Æ.

В любой конкретной задаче приходится иметь дело только с подмножествами некоторого, фиксированного для данной задачи, множества. Его принято называть универсальным и обозначать символом U.

Например, при сборке некоторого изделия универсальным множеством естественно назвать множество всех деталей и сборочных элементов, из которых это изделие состоит.

Если мы рассматриваем множества, связанные с какими-нибудь фигурами на плоскости, то в качестве универсального множества можно выбрать множество всех точек плоскости.

Определение 1.2. Два множества A и B называются равными (A = B), если они состоят из одних и тех же элементов. Поэтому несуществен порядок записи в фигурных скобках элементов множества, задаваемого списком, т.е. { a, b, c } = { a, c, b }.

Определение 1.3. Множество A называется подмножеством множества B, если любой элемент множества A принадлежит множеству B. При этом пишут A Ì B, где " Ì " есть знак вложения подмножества. Из определения следует, что для любого множества A справедливы, как минимум, два вложения A Ì A и A Ì U.

Определение 1.4. Если A Ì B и A ¹ B, A ¹ Æ, то A называется

собственным подмножеством множества B. В этом случае B содержит хотя бы один элемент, не принадлежащий A.

В теории множеств, по определению, полагают, что пустое множество является подмножеством любого множества: Æ ÌA.

Пустое множество и само множество A называются несобственными подмножествами множества A.

При графическом изображении множеств удобно использовать диаграммы Венна, на которых универсальное множество обычно представляют в виде прямоугольника, а остальные множества в виде овалов, заключенных внутри этого прямоугольника (рис 1.1).

Определение 1.5. Объединением множеств A и B (обозначение A ÈB) называется множество элементов x таких, что x принадлежит хотя бы одному из двух множеств A или B (рис 1.2). Символически это можно записать следующим образом:

AÈ B = {x|x Î A или x Î B}.

Определение 1.6. Пересечением множеств A и B (обозначение A ÈB) называется множество, состоящее из элементов x, которые принадлежат и множеству A и множеству B (рис. 1.3):

AÈ B = { x|x Î A и x Î B}.

Определение 1.7. Разностью множеств A и B называется множество всех тех элементов множества A, которые не принадлежат множеству B (рис. 1.4):

A\B = { x|x Î A и x Î B}.

Определение 1.8. Симметрической разностью множеств A и B называется множество A D B = (A\B) È (B\A) (рис. 1.5).

Определение 1.9. Абсолютным дополнением множества A называется множество всех элементов, не принадлежащих A, т.е. множество A = U\A, где U - универсальное множество (рис. 1.6).

В дальнейшем вместо термина "абсолютное дополнение" мы будем употреблять термин "дополнение".

Пример 1.1. Если U = { a, b, c, d, e, f, g, h }, A = { c, d, e }, B = { a, c, e, f, h }, то

A ÈB = { a, c, d, e, f, h }, A ÇB = { c, e }, A\B = {d},

 

 

A D B = { a, d, f, h }, A   = { a, b, f, g, h }.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)