АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Короткі теоретичні відомості. Проекція вектора , тобто моменту сили відносно центра О, на яку-небудь вісь z, що проходить через цей центр (рис

Читайте также:
  1. А). Теоретичні передумови.
  2. А). Теоретичні передумови.
  3. А). Теоретичні передумови.
  4. А). Теоретичні передумови.
  5. Арбітражному керуючому забороняється розголошувати відомості, що стали йому відомі у зв’язку з його діяльністю, і використовувати їх у своїх інтересах або в інтересах третіх осіб.
  6. Базові відомості
  7. ВИХОВАННЯ У ДІТЕЙ СТАТЕВОЇ САМОСВІДОМОСТІ
  8. Відомості про складову частину документа // Відомості про ідентифікуючий документ. – Відомості про місцезнаходження складової частини в документі. – Примітки.
  9. Відомості, що становлять державну таємницю
  10. Властивості свідомості та її структура.
  11. Втрата свідомості, травми
  12. Г) теоретичні знання та практичні навички певної роботи.

Проекція вектора , тобто моменту сили відносно центра О, на яку-небудь вісь z, що проходить через цей центр (рис. 15), називається моментом сили відносно осі z, тобто

або ,

де – момент сили відносно осі z, γ – кут між вектором і віссю z.

Із означення виходить, що , як проекція вектора на вісь, величина алгебраїчна. Знак визначається так само, як і знак проекції будь-якого вектора, у нашому випадку > 0.

Знайдемо ще один вираз для визначення цієї величини. Для цього через довільну точку О1 осі z (див. рис.15) проведемо площину (xy ), перпендикулярну цій осі, й спроектуємо ∆ОАВ на цю площину. Оскільки вектор перпендикулярний площині ОАВ, а вісь z перпендикулярна Δ О1А1В1, то кут γ, як кут між нормалями до цих площин, буде кутом між цими площинами. Тоді:

або .

Отже, момент сили відносно осі z дорівнює алгебраїчному моменту проекції цієї сили на площину, перпендикулярну осі z, взятому відносно точки О1 перетину осі з цією площиною.

Це є друге означення моменту сили відносно осі.

Момент сили відносно осі буде мати знак плюс, коли з додатного кінця осі поворот, що прагне здійснити сила , бачиться проти ходу годинникової стрілки, а знак мінус – за ходом годинникової стрілки.

Послідовність обчислення моменту сили відносно осі (рис.16):

1) необхідно провести площину (xy ), перпендикулярну осі z;

2) спроектувати силу на цю площину і знайти величину Fxy;

3) опустити із точки перетину О осі з площиною перпендикуляр на лінію дії і знайти його довжину h;

4) обчислити добуток Fxy·h;

5) визначити знак моменту.

Поодинокі випадки:

1) якщо сила паралельна осі, то її момент відносно осі дорівнює нулю (оскільки Fxy = 0);

2) якщо лінія дії сили перетинає вісь, то її момент відносно осі також дорівнює нулю (оскільки h=0);

3) якщо сила перпендикулярна осі, то її момент відносно цієї осі дорівнює взятому з відповідним знаком добутку модуля сили на відстань між лінією дії сили і віссю.

Поєднуючи пункти 1 і 2, відзначимо, що момент сили відносно осі дорівнює нулю, якщо сила і вісь лежать в одній площині.

Необхідні й достатні умови рівноваги будь-якої системи сил виражаються рівностями , . Але вектори та дорівнюють нулю тільки тоді, коли і , тобто коли:

Таким чином, для рівноваги довільної просторової системи сил необхідно і достатньо, щоб суми проекцій всіх сил на кожну з трьох координатних осей і алгебраїчні суми їх моментів відносно цих осей дорівнювали нулю.

Випадок збіжних сил. Для рівноваги просторової системи збіжних сил має виконуватись рівність . Аналітично модуль головного вектора визначається за формулою:

Оскільки під коренем стоїть сума додатних складових, то R може дорівнювати нулю тільки тоді, коли одночасно Rx=0, Ry=0, Rz=0,тобто коли сили, що діють на тіло, будуть задовольняти рівності:

Ці рівності і виражають умови рівноваги системи збіжних сил в аналітичній формі: для рівноваги просторової системи збіжних сил необхідно і достатньо, щоб алгебраїчні суми проекцій цих сил на кожну з трьох координатних осей дорівнювали нулю.

Випадок паралельних сил. Якщо всі сили, що діють на тіло, паралельні одна одній, можна обрати координатні осі таким чином, щоб вісь z була паралельна силам (рис.17). Тоді проекції кожної із сил на осі x та y і їх моменти відносно осі z будуть дорівнювати О, тому будемо мати тільки три умови:

Отже, для рівноваги просторової системи паралельних сил необхідно і достатньо, щоб алгебраїчна сума проекцій всіх сил на вісь, паралельну силам, і алгебраїчні суми їх моментів відносно двох інших координатних осей дорівнювали нулю.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)