АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

При условиях

Читайте также:
  1. A) подписать коллективный договор на согласованных условиях с одновременным составлением протокола разногласий
  2. I Распад аустенита в изотермических условиях
  3. I. Правила поведения в условиях вынужденного автономного существования.
  4. I. При каких условиях эта психологическая информация может стать психодиагностической?
  5. А) Поведение фирмы в условиях совершенной конкуренции
  6. Анализ инвестиционного проекта в условиях риска.
  7. Анализ инвестиционных проектов в условиях инфляции
  8. Анализ поведения фирмы в краткосрочном периоде в условиях монополистической конкуренции
  9. Анализ ФСП основывается главным образом на относительных показателях, так как абсолютные показатели баланса в условиях инфляции сложно привести в сопоставимый вид.
  10. Анализ эффективности проектов в условиях инфляции
  11. БЖД В УСЛОВИЯХ ПРОИЗВОДСТВА (ОХРАНА ТРУДА)
  12. БЖД в условиях производства – охрана труда.

;

.

Здесь , а переменные. Задача ЛП каноническая. Нетрудно убедиться, что r(A) = r(R), т.е. система ограничений совместна. Кроме того, r(A) = 4, n = 6. Составим исходную симплексную таблицу.

 

 

Исходная симплексная таблица

 

Базисные переменные Свободные члены Коэффициенты при неизвестных
           
               
               
               
               
F                

 

Пустые клетки соответствуют нулям. Столбец контрольной суммы () включает в себя алгебраические суммы коэффициентов каждой строки и служит для контроля арифметических действий при последующем преобразовании данной таблицы. Последняя строка таблицы называется индексной. При ее заполнении свободный член целевой функции выписывается со своим знаком, а коэффициенты при неизвестных (оценки) – с противоположным. Выберем так называемый разрешающий столбец с положительной оценкой. Но таких столбцов два. Выбираем столбец с оценкой 5. Далее выбирается так называемая разрешающая строка. Из отношений свободных членов к положительным коэффициентам разрешающего столбца () выбираем наименьшее т.е. . Это отношение и соответствует разрешающей строке. Коэффициент 3, находящийся на пересечении разрешающей строки и разрешающего столбца, называется разрешающим элементом. Выведем из базиса, а (провокатор) введем в базис. В результате получим новые наборы базисных и свободных переменных. Необходимо выразить базисные переменные и целевую функцию через свободные переменные. Для этого разрешающую строку в исходной симплексной таблице делим на разрешающий элемент. Результат заноситься в новую симплексную таблицу “Итерация 1”.

Итерация 1

 

Базисные переменные Свободные члены   Коэффициенты при неизвестных  
 
          -1    
          -1/3   32/3
          1/3   19/3
               
F -25         -5/3   -59/3

 

Коэффициенты данной симплексной таблицы вычисляются таким образом, чтобы в разрешающем столбце исходной таблицы все элементы, кроме разрешающего, стали нулевыми. Например, для того что бы в исходной таблице в уравнении 2 +3 + =19 получить коэффициент при нуль, надо третью строку в таблице «Итерация 1» умножить на (-3) и сложить с первой строкой исходной таблицы. Результат записывается в первую строку таблицы «Итерация 1». Получим 2 + - =4, откуда базисное переменное легко можно выразить через свободные переменные. Аналогично вычисляется в этой строке и контрольная сумма: (. Алгебраическим сложением коэффициентов строки убеждаемся, что арифметической ошибки нет. В полученной таблице «Итерация 1» выбирается положительная оценка. В частности, столбец, соответствующий оценке 7, будет разрешающим. Затем выбирается разрешающая строка и т.д. Столбец контрольной суммы для простоты можно опустить. Продолжим решение. В итоге получим следующие симплексные таблицы:

 

Итерация 2

Базисные переменные Свободные члены Коэффициенты при неизвестных
      1/2   -1/2  
      -1   2/3  
          1/3  
      -3/2   3/2  
F -39     -7/2   11/6  

 

Итерация 3

 

Базисные переменные Свободные члены Коэффициенты при неизвестных
      -1/4 3/4    
      -3/2 3/2    
      1/2 -1/2    
      3/4 -9/4    
F -50     -3/4 -11/4    

 

Выписав из последней симплексной таблицы выражение для целевой функции убедимся, что базисное решение является оптимальным (все оценки в индексной строке отрицательны), а .

Решая задачу максимизации при тех же условиях, что и раньше, получим . Оптимальное решение этой задачи оптимизации совпадает с оптимальным решением задачи минимизации .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)